HomeProduct DesignFactory ToursHow is PCB Manufacturing Process Done Super Efficiently

How is PCB Manufacturing Process Done Super Efficiently

4.5
(2)

Printed circuit boards, or PCBs, are the foundation of most electronic devices and is achieved through the PCB manufacturing process. They are made by layering thin sheets of copper onto a non-conductive substrate, and then etching away the excess copper to create the desired circuit pattern.

PCBs can be very simple, with just a few copper traces, or extremely complex, with several layers of interconnecting circuitry, effectively forming a 3D mesh. The manufacturing process must be carefully controlled to ensure that the finished PCB meets the desired specifications without missing or intermittent contact.

There are several methods that can be used to create the circuit pattern on a PCB. The choice of method will depend on the complexity of the desired pattern. The key common methods, used also in the 2 videos below, for creating circuit patterns on PCBs are photolithography and etching.

PCB Manufacturing Steps

    •  

      Photolithography is a process of using light to create the desired circuit pattern on the PCB. This first step of the PCB manufacturing process begins with the application of a photosensitive resist onto the PCB surface, which is then selectively exposed to ultraviolet light through a mask that contains the desired circuit pattern. The exposure hardens the photosensitive material in the areas corresponding to the circuit design, while the unexposed areas remain soft and are subsequently removed during the development phase. This leaves a detailed pattern of the circuit on the board, allowing for the etching of the underlying material to create conductive paths. Photolithography allows for high precision and repeatability, making it possible to produce complex and densely packed circuits that are essential for modern electronic devices.

    • Etching: this next step is to etch away the exposed copper to create the desired circuit pattern. There are many different etching chemicals that can be used, depending on the type of copper being used and the desired results. Once the etching solution is applied, it reacts with the exposed copper, efficiently eroding it away while the protected areas remain unaffected. This method allows for the precise and efficient creation of complex circuit designs, making it a vital step in the manufacturing of electronic devices. Advanced etching techniques and equipment have been developed over time to improve accuracy and reduce environmental impact, further enhancing the capabilities and sustainability of PCB production. Once the etching is complete, the remaining photoresist is removed, leaving behind the desired circuit pattern on the PCB.
    • The next step is the application of solder mask, a protective layer that insulates the copper traces and prevents solder bridges during component placement. This is typically done through a process called solder mask application, where a liquid photoimageable film is applied and then cured using UV light.
    • Next, the silkscreen process is employed to print component identifiers, logos, or other necessary markings on the board. Following this, the boards undergo a surface finish process, such as hot air solder leveling (HASL), immersion gold, or other methods, to prepare the copper pads for soldering by enhancing their solderability and protecting them from oxidation.
    • Drilling is another critical step in PCB Manufacturing, where precise holes are created for component leads and vias, often using computer-controlled machines to ensure accuracy. Once drilling is complete, the boards may undergo plating to coat the drilled holes with copper, creating electrical connections between different layers.
    • Finally, electrical testing ensures that the PCB functions as intended by checking for shorts, opens, and other defects. Each of these processes is vital to producing a reliable and high-quality printed circuit board ready for assembly.

These steps are shown in much more detail and explanations in the two PCB manufacturing factories hereafter, from order intake to control and packaging, achieving the impressive KPIs of

  • total delivery time from order intake to shipping: 2 to 4 days
  • 5000+ orders per day!

and this for unit orders, not necessarily returning customers, for pros and non-pros -meaning potential errors in the demand-, and some design and quality checks along the process. Be inspired!

At PCBway:

YouTube player

 

And then how its main competitor does it, JLCPCB

YouTube player

For further electronic vocabulary, PCB types, and components footprints, refer to the PCB and electronic reference detailed Post or Wikipedia PCB Manufacturing page.

How useful was this post?

Click on a star to rate it!

Average rating 4.5 / 5. Vote count: 2

No votes so far! Be the first to rate this post.

As you found this post useful...

Follow us on social media!

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post?

3 COMMENTS

  1. Such quick turnaround times for thousands of orders daily! And the videos are old! Is probably more by now!

  2. The inclusion of the videos offers a great visual insight into the intricate processes involved in achieving such precision and speed.

  3. It’s fascinating to see how the intricate process of PCB manufacturing can be completed in just 2 to 4 days with such high efficiency and precision. The videos from PCBway and JLCPCB provide great insights into the industry and highlight the impressive capabilities of modern manufacturing techniques!

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.

RELATED ARTICLES
Exact matches only
include Online Tools
include Events

Table of Contents

NEW / UPDATED

Microplastics: origins, impacts and technical solutions

Did you know that plastic makes up 60% to 80% of marine waste? Shockingly, 90% of floating waste...

Patent vs Copyright: Key Differences Explained

In 2022, 3.5 million patents were given out all over the world. This shows how crucial intellectual property...

How to Use the LED Technology for Innovative Designs

Did you know LED lights can shine for up to 50,000 hours? That's about 50 times longer than...

Neural Engineering: Bridging Brain and External World

Neural engineering is a field where neuroscience meets engineering. It aims to create technologies that communicate or improve...

Brain-computer interfaces: the next 6th sense

Can brain-computer interfaces give us a new sense, like ESP, and change our future abilities? Sitting at the...

WANTED
Only mechanics will transform software or electronics into physical products. Can I help as Product Dev, R&D Manager or Project Manager?
Effective product development

Available on short notice in France & Swiss.
Contact the author on LinkedIn
Design-to-cost, Ergonomics, Medium to high-volume, Regulated industries, CE & FDA, Lean Sigma Black Belt