Home » Quantum Size Effect in Nanomaterials

Quantum Size Effect in Nanomaterials

1980
Laboratory analysis of quantum dots demonstrating quantum size effect in semiconductor physics.

The Quantum Size Effect describes the phenomenon where the electronic and optical properties of a material change as its size approaches the nanoscale. When the dimensions of a material become comparable to the electron’s de Broglie wavelength, quantum confinement occurs. This quantizes the electron energy levels, leading to a size-dependent band gap, \(E_g(R) \approx E_{g,\b\u\lk} + \frac{\hbar^2\pi^2}{2R^2}(\frac{1}{m_e^*} + \frac{1}{m_h^*})\).

The Quantum Size Effect is a direct consequence of quantum mechanics and is one of the primary reasons nanomaterials exhibit unique behaviors. In a bulk semiconductor, the energy levels for electrons and holes are so closely spaced they form continuous bands: a valence band and a conduction band, separated by an energy band gap, \(E_g\). However, when the semiconductor is shrunk to a nanocrystal (a quantum dot), its dimensions become comparable to the exciton Bohr radius (the natural separation distance between an electron-hole pair).

This spatial confinement forces the electrons and holes into a much smaller volume, effectively acting like a “particle in a box.” According to quantum mechanics, this confinement discretizes the continuous energy bands into discrete, quantized energy levels. The energy separation between these levels increases as the size of the nanocrystal decreases. Consequently, the effective band gap of the material widens. The Brus equation provides a first-order approximation for the new band gap, \(E_g(R)\), of a spherical nanocrystal of radius R, where \(m_e^*\) and \(m_h^*\) are the effective masses of the electron and hole, respectively. This size-tunable band gap is the key to the unique optical properties of quantum dots. When an electron is excited and then relaxes back to its ground state, it emits a photon with energy corresponding to the band gap. Since the band gap is size-dependent, smaller dots emit higher-energy (bluer) light, while larger dots emit lower-energy (redder) light, allowing for precise color tuning by simply controlling the particle size during synthesis.

UNESCO Nomenclature: 2211
– Solid state physics

Type

Physical Phenomenon

Disruption

Revolutionary

Usage

Widespread Use

Precursors

  • the schrödinger equation and the “particle in a box” model
  • the concept of electron-hole pairs (excitons) in semiconductors
  • development of colloidal synthesis methods for producing monodisperse nanocrystals
  • advances in spectroscopy allowing for the measurement of optical properties of small particles

Applications

  • quantum dot (qd) displays in televisions (qled)
  • led lighting with tunable colors
  • biological imaging and fluorescent labeling
  • solar cells with enhanced efficiency
  • lasers with tunable frequencies

Patents:

  • US 5,990,479
  • US 6,207,229
  • US 6,322,901

Potential Innovations Ideas

Professionals (100% free) Membership Required

You must be a Professionals (100% free) member to access this content.

Join Now

Already a member? Log in here
Related to: quantum confinement, quantum dot, band gap, size effect, de broglie wavelength, exciton bohr radius, brus equation, semiconductor, nanocrystal, optoelectronics.

Leave a Reply

Your email address will not be published. Required fields are marked *

AVAILABLE FOR NEW CHALLENGES
Mechanical Engineer, Project, Process Engineering or R&D Manager
Effective product development

Available for a new challenge on short notice.
Contact me on LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

We are looking for a new sponsor

 

Your company or institution is into technique, science or research ?
> send us a message <

Receive all new articles
Free, no spam, email not distributed nor resold

or you can get your full membership -for free- to access all restricted content >here<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll to Top

You May Also Like