Home » Hume-Rothery Rules for Solid Solutions (metallurgy)

Hume-Rothery Rules for Solid Solutions (metallurgy)

1930
  • William Hume-Rothery
Technician analyzing nickel-based superalloy in metallurgy lab, focusing on Hume-Rothery rules.

The Hume-Rothery rules are a set of empirical guidelines that predict the extent to which an element can dissolve in a metal, forming a solid solution. For substantial substitutional solubility, the rules state that the atomic size difference should be less than 15%, the crystal structures must be similar, the electronegativities should be comparable, and the elements should have the same valency.

The Hume-Rothery rules provide a crucial qualitative framework for metallurgists to design new alloys. They are not absolute laws but rather strong indicators of potential solid solubility. The four primary rules are:

1. Atomic Size Factor: The difference in atomic radii between the solute and solvent atoms must be less than 15%. If the size difference is too large, the resulting lattice strain is too high to maintain a stable solid solution, and new phases or intermetallic compounds are likely to form instead.

2. Crystal Structure: The solute and solvent metals must have the same crystal structure (e.g., Face-Centered Cubic, Body-Centered Cubic). A similar crystal structure facilitates the substitution of atoms without disrupting the overall lattice arrangement.

3. Electronegativity: The electronegativity of the two elements should be similar. A large difference in electronegativity encourages the formation of stable intermetallic compounds rather than a substitutional solid solution, as the elements tend to form ionic or covalent bonds.

4. Valency: The elements should have the same valency. A metal will dissolve a metal of higher valency to a greater extent than one of lower valency. This rule is related to the electron concentration in the alloy, which affects the stability of certain phases.

These rules, while developed empirically, have a strong basis in the thermodynamics and crystal chemistry of metallic systems and remain a cornerstone of materials education and alloy development.

UNESCO Nomenclature: 3308
– Metallurgy

Type

Scientific Principle

Disruption

Substantial

Usage

Widespread Use

Precursors

  • compilation of data on atomic radii
  • classification of crystal structures (fcc, bcc, hcp)
  • linus pauling’s development of the electronegativity scale
  • the concept of valency from classical chemistry
  • phase diagram determination through thermal analysis

Applications

  • development of new nickel-based superalloys for jet engines
  • design of specific aluminum alloys for aerospace frames
  • formulation of biocompatible titanium alloys for medical implants
  • predictive modeling in computational materials science (alloy informatics)
  • creation of high-performance magnesium alloys for lightweight automotive parts

Patents:

    Potential Innovations Ideas

    Professionals (100% free) Membership Required

    You must be a Professionals (100% free) member to access this content.

    Join Now

    Already a member? Log in here
    Related to: hume-rothery rules, solid solution, substitutional alloy, atomic radius, crystal structure, electronegativity, valency, alloy design, metallurgy, miscibility.

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    AVAILABLE FOR NEW CHALLENGES
    Mechanical Engineer, Project, Process Engineering or R&D Manager
    Effective product development

    Available for a new challenge on short notice.
    Contact me on LinkedIn
    Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

    We are looking for a new sponsor

     

    Your company or institution is into technique, science or research ?
    > send us a message <

    Receive all new articles
    Free, no spam, email not distributed nor resold

    or you can get your full membership -for free- to access all restricted content >here<

    Historical Context

    (if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

    Related Invention, Innovation & Technical Principles

    Scroll to Top

    You May Also Like