Heim » Differentiable Manifolds (geom)

Differentiable Manifolds (geom)

1854
  • Bernhard Riemann

A differentiable manifold is a topological space that is locally similar to Euclidean space, allowing calculus to be applied. Each point has a neighborhood that is homeomorphic to an open subset of [latex]\mathbb{R}^n[/latex]. These local coordinate systems, called charts, are related by smooth transition functions, forming an atlas that defines the manifold’s differentiable structure.

A differentiable manifold is the central object of study in differential geometry. The concept formalizes the idea of a “curved space” of any dimension. While globally a manifold can be complex (like a sphere or a torus), locally, around any point, it looks like a flat piece of Euclidean space. This local “flatness” is key, as it allows us to use the tools of multivariable calculus.

The formal definition involves a set of points M, a topology on M, and an atlas. An atlas is a collection of charts, where each chart is a pair (U, φ), with U being an open subset of M and φ being a homeomorphism from U to an open subset of [latex]\mathbb{R}^n[/latex]. For any two overlapping charts, (U, φ) and (V, ψ), the transition map [latex]\psi \circ \phi^{-1}[/latex] from [latex]\phi(U \cap V)[/latex] to [latex]\psi(U \cap V)[/latex] must be a diffeomorphism (infinitely differentiable with a differentiable inverse). This compatibility condition ensures that calculus performed in one coordinate system is consistent with calculus performed in another.

This structure allows for the definition of tangent spaces, vector fields, and differential forms on the manifold, independent of any particular coordinate system. It provides a Rahmen for studying geometry intrinsically, without needing to embed the space in a higher-dimensional ambient space.

UNESCO Nomenclature: 1204
– Geometry

Typ

Abstract System

Disruption

Foundational

Verwendung

Widespread Use

Precursors

  • Euclidean geometry
  • Non-Euclidean geometries (Lobachevsky, Bolyai)
  • Theory of surfaces by Carl Friedrich Gauss
  • Coordinate systems by René Descartes
  • Early concepts of topology

Anwendungen

  • general relativity (spacetime is modeled as a 4d lorentzian manifold)
  • Robotik (configuration spaces of robots are manifolds)
  • computer graphics (representing complex surfaces)
  • string theory
  • classical Mechanik (phase space is a symplectic manifold)

Patente:

DAS

Potential Innovations Ideas

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: manifold, topology, differentiable structure, atlas, chart, euclidean space, calculus, geometry

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Related Invention, Innovation & Technical Principles

Nach oben scrollen

Das gefällt dir vielleicht auch