More complex than just corrosion cracking, Liquid Metal Embrittlement (LME) is a phenomenon where certain ductile metals become brittle when exposed to specific liquid metals, leading to sudden and catastrophic failure under stress. This occurs through the rapid penetration of the liquid metal along the grain boundaries of the solid metal, thereby weakening interatomic bonds and facilitating crack initiation and propagation. LME is highly dependent on the combination of the solid and liquid metals involved, as well as factors like temperature and applied stress. Common industrial examples include the embrittlement of steel by liquid zinc or aluminum during hot-dip galvanizing processes.
This is our latest selection of worldwide publications and patents in english on Liquid Metal Embrittlement (LME), between many scientific online journals, classified and focused on liquid metal embrittlement, metal embrittlement, liquid metal, Ga-Al, liquid metal induced embrittlement, induced embrittlement, ductility loss, ductile-to-brittle, grain boundaries, mercury embrittlement, gallium embrittlement, Al-Ga, liquid gallium and aluminium gallium.
Publication: no recent news on this particular topic. Please try the extensive manual search in the Publication Database linked just above.
Process method for producing x80 pipeline steel having extreme specifications in high water temperature seasons
Patent published on the 2025-04-03 in WO under Ref WO2025066736 by BENGANG STEEL PLATES CO LTD [CN] (Wu Gang [cn], Liu Zhipu [cn], Han Yu [cn], Gong Zhen [cn], Zhou Yanfeng [cn], Ma Siyuan [cn])
Abstract: A process method for producing X80 pipeline steel having extreme specifications in high water temperature seasons. Ideal mechanical properties and microstructure are obtained by means of controlling composition, heating, rolling, cooling, laminar cooling water temperature and other processes and technologies. The metallographic structure of the steel is composed of acicular ferrite + granular bainite + M-A; in particular, the content of the M-A component is controlled to be 4-8%, and the average[...]
Our summary: Ideal process method for producing X80 pipeline steel with extreme specifications in high water temperature seasons, achieving ideal mechanical properties and microstructure, meeting standard requirements for pipeline projects prone to large plastic deformation.
pipeline steel, process method, high water temperature, mechanical properties
Patent
Conductive and adhesive liquid metal copper paste
Patent published on the 2025-03-06 in WO under Ref WO2025049954 by VIRGINIA TECH INTELLECTUAL PROPERTIES INC [US] (Bartlett Michael D [us], Anand Tutika Ravi Tej [us])
Abstract: Embodiments of a liquid metal paste for coupling conductive components of circuits formed in or on rigid, flexible, and stretchable substrates are described. In one example, a liquid metal paste includes liquid metal. The liquid metal paste further includes copper elements mixed with the liquid metal to form a conductive mixture. In another example, the liquid metal paste further includes an elastomer material mixed with the liquid metal to form a conductive and adhesive mixture.[...]
Our summary: Liquid metal copper paste for coupling conductive components in circuits on various substrates, includes copper elements and elastomer material for conductivity and adhesion.
liquid metal, copper paste, conductive components, elastomer material
Patent
Assembly of flexible interconnects using sedimentation
Patent published on the 2025-03-06 in WO under Ref WO2025048947 by VIRGINIA TECH INTELLECTUAL PROPERTIES INC [US] (Bartlett Michael D [us], Ho Dong Hae [us])
Abstract: Embodiments of interplanar interconnects, intraplanar interconnects, and methods for forming the same in rigid, flexible, and stretchable substrates are described. In one example, a method for forming interplanar interconnects in a substrate includes injecting a solution into a mold cavity of a molding structure. The solution includes a polymer matrix and liquid metal elements. The method further includes performing a curing process on the solution to form an interplanar interconnect in the poly[...]
Our summary: Assembly of flexible interconnects using sedimentation, methods for forming interplanar and intraplanar interconnects in rigid, flexible, and stretchable substrates, injecting solution with polymer matrix and liquid metal elements into mold cavity for interplanar interconnect formation.
interconnects, sedimentation, flexible, substrates
Patent
it would be great if these patents were more accessible to students and independent researchers
Related Posts
Latest Publications & Patents on Aerogels and Aerographene
Latest Publications & Patents on High‑Entropy Oxides (HEOs)
Latest Publications & Patents on MXenes
Latest Publications & Patents on Quantum Dots
Latest Publications & Patents on Perovskites
Latest Publications & Patents on Graphene