Home » Verification vs. Validation

Verification vs. Validation

1980
  • Barry Boehm

Verification and validation (V&V) are distinct processes. Verification ensures a product meets its specified requirements (“Are you building it right?”). Validation ensures the product meets the user’s actual needs and intended use (“Are you building the right thing?”). They are complementary activities within quality management, often performed sequentially or in parallel to ensure both correctness and usefulness.

The distinction between verification and validation is fundamental to quality assurance in any complex engineering discipline, particularly software and systems engineering. Verification is an internal quality process focused on compliance with specifications. It involves activities like reviews, inspections, and walkthroughs of design documents, code, and requirements. The goal is to find defects early in the development lifecycle. For example, a code review verifies that the software adheres to coding standards and correctly implements a specific algorithm as described in a design document.

Validation, on the other hand, is an external quality process focused on fitness for purpose. It assesses whether the final product is effective in the operational environment for which it was intended. This typically involves testing the product with actual users or in a simulated real-world environment. For instance, user acceptance testing (UAT) is a validation activity where end-users test the software to see if it helps them perform their tasks efficiently and effectively. A system can be perfectly verified—meaning it has no bugs and meets all documented specifications—but still fail validation if those specifications were flawed or did not accurately capture the user’s true needs.

Barry Boehm’s work emphasized that these two activities answer different questions and are crucial for delivering a successful product. Neglecting verification leads to a buggy, unreliable product, while neglecting validation leads to a product that, while technically sound, is ultimately useless to its intended audience. The two processes work in tandem to ensure both correctness and usefulness.

UNESCO Nomenclature: 1203
– Computer Science

Type

Abstract System

Disruption

Substantial

Usage

Widespread Use

Precursors

  • early concepts of quality control in manufacturing
  • formal logic and proof theory
  • structured programming principles
  • early software testing methodologies

Applications

  • agile software development methodologies
  • systems engineering lifecycle models (e.g., v-model)
  • pharmaceutical drug development protocols
  • aerospace systems certification (e.g., DO-178C)
  • medical device approval processes (e.g., FDA regulations)

Patents:

NA

Potential Innovations Ideas

Professionals (100% free) Membership Required

You must be a Professionals (100% free) member to access this content.

Join Now

Already a member? Log in here
Related to: verification, validation, quality assurance, software engineering, systems engineering, requirements, specification, testing

Leave a Reply

Your email address will not be published. Required fields are marked *

AVAILABLE FOR NEW CHALLENGES
Mechanical Engineer, Project or R&D Manager
Effective product development

Available for a new challenge on short notice.
Contact me on LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

We are looking for a new sponsor

 

Your company or institution is into technique, science or research ?
> send us a message <

Receive all new articles
Free, no spam, email not distributed nor resold

or you can get your full membership -for free- to access all restricted content >here<

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll to Top

You May Also Like