For materials that do not have a distinct yield point on their stress-strain curve, like aluminum or high-strength steel, ‘proof stress’ is the engineering equivalent. It is defined as the stress required to produce a small, specified amount of permanent (plastic) deformation, typically 0.2% of the original gauge length. This value, \(\sigma_{0.2}\), is used in design calculations as the material’s practical elastic limit.
Proof Stress
Many engineering materials, particularly ductile metals like aluminum alloys, copper alloys, and certain types of steel, do not exhibit the clear, sudden yielding behavior seen in mild steel. Their stress-strain curve transitions from elastic to plastic behavior gradually. For design and safety purposes, engineers need a consistent point to define the onset of permanent deformation. This is where proof stress, also known as offset yield strength, becomes crucial. To determine it, a tensile test is performed while plotting stress versus strain. A line is drawn on this graph parallel to the initial linear (elastic) portion of the curve, but offset from the origin by a specified strain value, most commonly 0.2% (or 0.002 strain). The stress at which this offset line intersects the stress-strain curve is defined as the 0.2% proof stress (\(\sigma_{0.2}\)).
This value is a practical and reproducible measure of the material’s elastic limit. It signifies that if the material is loaded to this stress level and then unloaded, it will have undergone a permanent deformation of 0.2%. While some plastic deformation has occurred, it is considered small enough to be acceptable for many structural applications. This convention allows engineers to design components using materials without a sharp yield point with the same safety and reliability principles as those with one, ensuring that structures do not permanently deform under their design loads.
Type
Disruption
Usage
Precursors
- hooke’s law of elasticity
- development of the tensile testing machine
- the concept of stress and strain
- the need to characterize the mechanical properties of new alloys developed in the late 19th and early 20th centuries
Applications
- material specification for aerospace alloys
- design of automotive components
- structural engineering calculations for buildings and bridges
- quality control in metal production
- finite element analysis (fea) material models
Patents:
Potential Innovations Ideas
Professionals (100% free) Membership Required
You must be a Professionals (100% free) member to access this content.
AVAILABLE FOR NEW CHALLENGES
Mechanical Engineer, Project, Process Engineering or R&D Manager
Available for a new challenge on short notice.
Contact me on LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
We are looking for a new sponsor
Your company or institution is into technique, science or research ?
> send us a message <
Receive all new articles
Free, no spam, email not distributed nor resold
or you can get your full membership -for free- to access all restricted content >here<
Related Invention, Innovation & Technical Principles