Home » Lenz’s Law

Lenz’s Law

1834
  • Heinrich Lenz

Lenz’s law provides the direction of the induced electromotive force (EMF) and current resulting from electromagnetic induction. It states that the induced current will flow in a direction that creates a magnetic field opposing the change in magnetic flux that produced it. This principle is a consequence of the conservation of energy and is represented by the negative sign in Faraday’s law.

Lenz’s law is a crucial qualitative rule that complements Faraday’s law of induction by specifying the direction of the induced current. While Faraday’s law quantifies the magnitude of the induced EMF (\(\mathcal{E} = -\frac{d\Phi_B}{dt}\)), the negative sign embodies Lenz’s law. The law is fundamentally a statement about energy conservation in electromagnetic systems. If the induced current were to flow in a direction that reinforced the change in flux, it would create a larger change in flux, which would induce an even larger current, leading to a runaway process that generates infinite energy from nothing, violating the principle of conservation of energy.

Instead, the induced current generates its own magnetic field that counteracts the initial change. For example, if the north pole of a magnet is moved towards a conducting loop, the magnetic flux through the loop increases. To oppose this increase, the induced current will flow in a direction that makes the loop’s face act like a north pole, repelling the incoming magnet. This requires work to be done to push the magnet against the repulsive force, and this mechanical work is converted into the electrical energy of the induced current.

Conversely, if the north pole is moved away from the loop, the flux decreases. The induced current will now flow in the opposite direction, creating a south pole on the loop’s face to attract the receding magnet, opposing its departure. This principle is elegantly applied in eddy current brakes, where a rotating metal disc moving through a magnetic field has circular eddy currents induced within it. These currents create magnetic fields that oppose the rotation, generating a smooth, contactless braking force that converts kinetic energy into heat within the disc.

UNESCO Nomenclature: 2205
– Electromagnetism

Type

Physical Principle

Disruption

Substantial

Usage

Widespread Use

Precursors

  • Michael Faraday’s discovery of electromagnetic induction (1831)
  • The principle of conservation of energy
  • Understanding of magnetic fields produced by currents (Ampère’s Law)

Applications

  • eddy current brakes
  • induction cooktops
  • metal detectors
  • damping mechanisms in sensitive balances
  • ground-fault circuit interrupters (GFCIs)
  • cardiac pacemakers (for sensing)
  • regenerative braking in hybrid vehicles

Patents:

NA

Potential Innovations Ideas

Professionals (100% free) Membership Required

You must be a Professionals (100% free) member to access this content.

Join Now

Already a member? Log in here
Related to: lenz’s law, electromagnetic induction, induced current, magnetic flux, conservation of energy, right-hand rule, eddy currents, counter-EMF

Leave a Reply

Your email address will not be published. Required fields are marked *

AVAILABLE FOR NEW CHALLENGES
Mechanical Engineer, Project, Process Engineering or R&D Manager
Effective product development

Available for a new challenge on short notice.
Contact me on LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

We are looking for a new sponsor

 

Your company or institution is into technique, science or research ?
> send us a message <

Receive all new articles
Free, no spam, email not distributed nor resold

or you can get your full membership -for free- to access all restricted content >here<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll to Top

You May Also Like