Casa » Mohr’s Circle for 3D Stress

Mohr’s Circle for 3D Stress

1882-01-01
  • Christian Otto Mohr
Mohr's circles analysis in continuum mechanics for stress evaluation.

For a general three-dimensional state of stress, the analysis is represented by three Mohr’s circles. These circles are drawn in the [latex]\sigma_n – \tau_n[/latex] plane using the three principal stresses ([latex]\sigma_1, \sigma_2, \sigma_3[/latex]) as diameters. The largest circle, defined by [latex]\sigma_1[/latex] and [latex]\sigma_3[/latex], encloses the other two and determines the absolute maximum shear stress, [latex]\tau_{abs max} = (\sigma_1 – \sigma_3)/2[/latex].

While the 2D Mohr’s circle is common, real-world stress states are three-dimensional. To analyze a 3D stress state, one first determines the three principal stresses, [latex]\sigma_1 \ge \sigma_2 \ge \sigma_3[/latex], which are the eigenvalues of the 3×3 Cauchy stress tensor. These three values are then used to construct three separate Mohr’s circles. The first circle is drawn between [latex]\sigma_1[/latex] and [latex]\sigma_2[/latex], the second between [latex]\sigma_2[/latex] and [latex]\sigma_3[/latex], and the third, largest circle between [latex]\sigma_1[/latex] and [latex]\sigma_3[/latex].

The stress state ([latex]\sigma_n, \tau_n[/latex]) for any arbitrarily oriented plane at the point will lie within the shaded area bounded by these three circles. A crucial insight from this 3D representation is the determination of the absolute maximum shear stress. Unlike the 2D case where the maximum in-plane shear is the radius, the absolute maximum shear stress for a 3D state is always the radius of the largest circle, given by [latex]\tau_{abs max} = R_{max} = (\sigma_{max} – \sigma_{min})/2 = (\sigma_1 – \sigma_3)/2[/latex]. This value is fundamental for applying failure criteria like the Tresca yield criterion in a general 3D context, as it represents the true maximum shear stress experienced by the material at that point.

UNESCO Nomenclature: 2203
– Classical mechanics

Tipo

Sistema astratto

Interruzione

Incrementale

Utilizzo

Uso diffuso

Precursori

  • Cauchy’s 3D stress tensor formulation
  • Eigenvalue analysis for 3×3 matrices
  • Mohr’s original 2D circle concept
  • Lamé’s stress ellipsoid concept

Applicazioni

  • analysis of complex stress states in mechanical components
  • geomechanics for understanding rock mechanics under triaxial stress
  • design of thick-walled pressione vessels
  • aerospace engineering for analyzing fuselage and wing stresses

Brevetti:

NA

Potenziali idee innovative

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: 3D stress, Mohr’s circle, principal stresses, absolute maximum shear stress, cauchy stress tensor, triaxial stress, geomechanics, solid mechanics, failure analysis, continuum mechanics.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto, ingegneria di processo o ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, produzione snella, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Contesto storico

(se la data non è nota o non è rilevante, ad esempio "meccanica dei fluidi", viene fornita una stima approssimativa della sua notevole comparsa)

Principi di invenzione, innovazione e tecnica correlati

Torna in alto

Potrebbe anche piacerti