Home » Formal Verification

Formal Verification

1980
  • Edmund M. Clarke
  • E. Allen Emerson
  • Joseph Sifakis

Formal verification is the use of mathematical methods to prove or disprove the correctness of a system’s design with respect to a formal specification. Unlike testing, which can only show the presence of bugs for specific inputs, formal verification can prove their absence for all possible inputs. It involves creating a formal model of the system and using techniques like model checking or theorem proving.

Formal verification provides the highest level of assurance for system correctness. The process begins with creating a formal model of the system using a mathematical language, such as temporal logic or process algebra. A set of properties, derived from the system’s requirements, is also expressed in a formal language. The verification process then uses automated tools to systematically explore all possible states of the model to determine if the specified properties hold true.

Two primary techniques are used: model checking and theorem proving. Model checking is an automated technique that explores the entire state space of a finite-state model. If a property is violated, the model checker produces a counterexample—a specific execution trace that demonstrates the failure. This is highly effective but can suffer from the ‘state space explosion’ problem for very complex systems. Theorem proving involves representing the system and its properties as logical formulas (theorems) and using automated or interactive provers to construct a formal proof of correctness. This approach can handle infinite-state systems but often requires significant manual effort from experts.

While computationally expensive and requiring specialized expertise, formal verification is indispensable for safety-critical or security-critical systems where the cost of failure is extremely high. It has been successfully applied to verify the correctness of CPU floating-point units, communication protocols, and control systems where exhaustive testing is infeasible.

UNESCO Nomenclature: 1203
– Computer Science

Type

Software/Algorithm

Disruption

Foundational

Usage

Niche/Specialized

Precursors

  • propositional and predicate logic
  • automata theory
  • lambda calculus
  • program semantics (e.g., hoare logic)
  • computational complexity theory

Applications

  • microprocessor design (e.g., intel pentium fdiv bug fix)
  • avionics software (e.g., fly-by-wire systems)
  • cryptographic protocol analysis
  • railway signaling systems
  • software drivers for critical operating systems

Patents:

NA

Potential Innovations Ideas

Professionals (100% free) Membership Required

You must be a Professionals (100% free) member to access this content.

Join Now

Already a member? Log in here
Related to: formal verification, model checking, theorem proving, formal methods, correctness, software verification, hardware verification, temporal logic

Leave a Reply

Your email address will not be published. Required fields are marked *

AVAILABLE FOR NEW CHALLENGES
Mechanical Engineer, Project, Process Engineering or R&D Manager
Effective product development

Available for a new challenge on short notice.
Contact me on LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

We are looking for a new sponsor

 

Your company or institution is into technique, science or research ?
> send us a message <

Receive all new articles
Free, no spam, email not distributed nor resold

or you can get your full membership -for free- to access all restricted content >here<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll to Top

You May Also Like