A constitutive equation, or constitutive relation, is a mathematical relationship that describes how a specific material responds to external stimuli. In continuum mechanics, it connects kinematic quantities like strain to kinetic quantities like stress. For example, Hooke’s Law, \(\boldsymbol{\sigma} = \mathbf{C} : \boldsymbol{\varepsilon}\), is a constitutive equation for linear elastic solids, relating the stress tensor \(\boldsymbol{\sigma}\) to the strain tensor \(\boldsymbol{\varepsilon}\).
Constitutive Equations
Constitutive equations are essential because the fundamental laws of continuum mechanics (conservation of mass, momentum, and energy) are universal and apply to all materials. However, different materials behave differently under the same loading conditions. A steel beam, a column of water, and a piece of rubber will all respond uniquely to an applied force. Constitutive equations provide the material-specific information needed to close the system of governing equations and obtain a unique solution for a given problem. They are determined experimentally and represent a mathematical model of a material’s behavior.
The complexity of constitutive equations varies greatly. The simplest models are for linear, isotropic materials. For a linear elastic solid, Hooke’s Law relates stress and strain linearly via a fourth-order stiffness tensor \(\mathbf{C}\). For a Newtonian fluid, the stress is linearly related to the rate of strain. However, many real-world materials exhibit much more complex behavior. Non-linear elasticity is needed for materials like rubber that undergo large deformations. Plasticity models describe permanent deformation after a yield stress is exceeded. Viscoelastic models, used for polymers, exhibit both fluid-like and solid-like characteristics, with their response depending on the rate of loading. Developing accurate constitutive models for advanced materials like composites, biological tissues, or granular materials is a major and ongoing area of research in mechanics.
Type
Disruption
Usage
Precursors
- Robert Hooke’s experiments on springs (‘ut tensio, sic vis’)
- Isaac Newton’s concept of viscosity in fluids
- The development of the mathematical concepts of stress and strain
- Experimental testing of material properties
Applications
- material selection in engineering design based on stress-strain behavior
- simulation of non-newtonian fluids like ketchup or blood in cfd
- modeling plasticity and permanent deformation in metal forming processes
- geotechnical engineering for describing the behavior of soil and rock under load
Patents:
Potential Innovations Ideas
Professionals (100% free) Membership Required
You must be a Professionals (100% free) member to access this content.
AVAILABLE FOR NEW CHALLENGES
Mechanical Engineer, Project or R&D Manager
Available for a new challenge on short notice.
Contact me on LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
We are looking for a new sponsor
Your company or institution is into technique, science or research ?
> send us a message <
Receive all new articles
Free, no spam, email not distributed nor resold
or you can get your full membership -for free- to access all restricted content >here<
Related Invention, Innovation & Technical Principles