It is impossible to simultaneously know with perfect accuracy certain pairs of complementary physical properties of a particle. The most common example is the position [latex]x[/latex] and momentum [latex]p[/latex]. The principle states that the product of their uncertainties, [latex]\Delta x[/latex] and [latex]\Delta p[/latex], must be greater than or equal to a specific value: [latex]\Delta x \Delta p \ge \frac{\hbar}{2}[/latex].
Heisenberg Uncertainty Principle
- Werner Heisenberg
The Heisenberg Uncertainty Principle is a fundamental tenet of quantum Mechanik, not a statement about the limitations of measurement technology. It reflects an inherent property of quantum systems. The principle arises from the wave-like nature of all quantum objects. A particle’s position and momentum are described by its wavefunction. A wavefunction that is highly localized in space (small [latex]\Delta x[/latex]) is necessarily composed of a wide superposition of many different momentum waves, resulting in a large uncertainty in momentum (large [latex]\Delta p[/latex]). Conversely, a wavefunction with a well-defined momentum (small [latex]\Delta p[/latex]) must be a spatially spread-out wave, leading to a large uncertainty in position (large [latex]\Delta x[/latex]).
The principle applies to any pair of ‘conjugate variables,’ which are related through Fourier transforms in the mathematical formalism of quantum mechanics. Another important pair is energy ([latex]E[/latex]) and time ([latex]t[/latex]), with the relation [latex]\Delta E \Delta t \ge \frac{\hbar}{2}[/latex]. This implies that the energy of a state that exists for only a short time cannot be precisely determined. This has profound consequences, such as allowing for the temporary creation of ‘virtual particles’ in quantum field theory, which mediate fundamental forces. The uncertainty principle fundamentally limits the determinism envisioned by classical physics, replacing it with a probabilistic description of nature at the smallest scales.
Typ
Disruption
Verwendung
Precursors
- Matrix mechanics (1925)
- Wave mechanics (Schrödinger, 1926)
- Fourier analysis
- Born rule (probabilistic interpretation of wavefunction, 1926)
Anwendungen
- understanding the stability of atoms
- explaining quantum tunneling
- estimating the size and energy of atomic ground states
- fundamental limits in quantum measurement and Signalverarbeitung
- quantum Kryptographie
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historical Context
Heisenberg Uncertainty Principle
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles