Formal verification is the use of mathematical methods to prove or disprove the correctness of a system’s design with respect to a formal specification. Unlike testing, which can only show the presence of bugs for specific inputs, formal verification can prove their absence for all possible inputs. It involves creating a formal model of the system and using techniques like model checking or theorem proving.
Formal Verification
- Edmund M. Clarke
- E. Allen Emerson
- Joseph Sifakis
Formal Überprüfung provides the highest level of assurance for system correctness. The process begins with creating a formal model of the system using a mathematical language, such as temporal logic or process algebra. A set of properties, derived from the system’s requirements, is also expressed in a formal language. The verification process then uses automated tools to systematically explore all possible states of the model to determine if the specified properties hold true.
Two primary techniques are used: model checking and theorem proving. Model checking is an automated technique that explores the entire state space of a finite-state model. If a property is violated, the model checker produces a counterexample—a specific execution trace that demonstrates the failure. This is highly effective but can suffer from the ‘state space explosion’ problem for very complex systems. Theorem proving involves representing the system and its properties as logical formulas (theorems) and using automated or interactive provers to construct a formal proof of correctness. This approach can handle infinite-state systems but often requires significant manual effort from experts.
While computationally expensive and requiring specialized expertise, formal verification is indispensable for safety-critical or security-critical systems where the cost of failure is extremely high. It has been successfully applied to verify the correctness of CPU floating-point units, Kommunikation protocols, and control systems where exhaustive testing is infeasible.
Typ
Disruption
Verwendung
Precursors
- propositional and predicate logic
- automata theory
- lambda calculus
- program semantics (e.g., hoare logic)
- computational complexity theory
Anwendungen
- microprocessor design (e.g., intel pentium fdiv bug fix)
- avionics Software (e.g., fly-by-wire systems)
- cryptographic protocol analysis
- railway signaling systems
- software drivers for critical operating systems
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historical Context
Formal Verification
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles