Home » Best AI Prompts Directory for Science & Engineering

Best AI Prompts Directory for Science & Engineering

AI Prompts

Simply the Biggest AI Prompts Directory Specialized in Product Design and Innovation

Ai prompts for product design
A comprehensive ai prompts directory designed to enhance product design, engineering, and innovation through optimized data processing and solution generation.

Welcome to the world’s largest AI prompts directory dedicated to advanced product design, engineering, science, innovation, quality, and manufacturing. While online AI tools are rapidly transforming the engineering landscape by augmenting human capabilities, their true power is unlocked through precise and expertly crafted instructions. This comprehensive directory provides you a collection of such prompts, enabling you to command AI systems that can process vast amounts of data, identify complex patterns, and generate novel solutions far more efficiently than traditional methods.

Discover and fine tune the exact prompts needed to leverage online AI agents for optimizing your designs for peak performance and manufacturability, accelerating complex simulations, accurately predicting material properties, and automating a diverse range of critical analytical tasks.
The advanced search filters allow fast access to this extensive directory and cover the full spectrum of modern engineering.

Given the server resources and time, the prompts themselves are reserved to registered members only, and not visible below if you are not logged. You can register, 100% free: 

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here
Filter by Domains
Filter by Categories
Filter by AI Output Formats
Filter by Requires Live Internet Accesses

AI Prompt to Quantitative Risk Analysis for Electrical Systems

This prompt asks the AI to perform a quantitative risk analysis on a specified electrical system, using input data like failure rates and exposure times. The user inputs failure data and system parameters.

Output: 

				
					Using the following failure rates data in CSV format: 
 {failure_rates_data} 
 and system parameters: 
 {system_parameters} 
 calculate quantitative risk metrics such as Failure Probability, Risk Priority Number (RPN), and expected downtime. Return a CSV table with columns: Component, FailureRate, Severity, Occurrence, Detection, RPN, MitigationActions. Explain calculations briefly in comments if possible.
							

AI Prompt to Evaluate Safety Measures for Electrical Design

This prompt directs the AI to evaluate the effectiveness of specified safety measures in an electrical design based on provided design details and standards. The user inputs design features and relevant safety standards.

Output: 

				
					Given the electrical design features: 
 {design_features} 
 and the following safety standards: 
 {safety_standards} 
 evaluate the adequacy of the implemented safety measures. Provide a detailed markdown report with sections for compliance, potential weaknesses, and recommendations for improvement. Use bullet points and bold important terms.
							

AI Prompt to Electrical System Risk Identification

This prompt helps identify potential risks and failure modes in a specified electrical system or component. The user inputs the system description and operating conditions, and the AI outputs a structured risk list with severity and likelihood assessments.

Output: 

				
					Based on the following electrical system description: 
 {electrical_system_description} 
 and the operating conditions: 
 {operating_conditions} 
 identify all potential risks, failure modes, and hazards. For each risk, provide an assessment of severity (High, Medium, Low) and likelihood (High, Medium, Low). Format the output as a JSON array with objects containing RiskDescription, Severity, Likelihood, and SuggestedMitigation.
							

AI Prompt to Analyze Evolution of Electrical Engineering Technologies

This prompt asks the AI to analyze the historical evolution and future outlook of a specific electrical engineering technology or concept. The user provides the technology name and timeline.

Output: 

				
					Analyze the historical development and evolution of the following electrical engineering technology: 
 {technology_name} 
 over this timeline: 
 {timeline} 
 Provide a markdown formatted report including key milestones, technological advances, influential researchers, and predicted future trends. Use headings, bullet points, and timeline tables where appropriate.
							

AI Prompt to Generate Bibliography of Seminal Papers

This prompt instructs the AI to generate a bibliography of seminal papers in a specified electrical engineering subfield. The user inputs the subfield and optionally filters such as date or authors.

Output: 

				
					Generate a CSV bibliography list of seminal papers in the electrical engineering subfield: 
 {electrical_subfield} 
 applying these filters if any: 
 {filters} 
 The CSV must include columns: PaperTitle, Authors, Year, JournalOrConference, DOI or URL. Sort by relevance and citation count if possible.
							

AI Prompt to Identify Knowledge Gaps in Electrical Engineering Literature

This prompt helps identify knowledge gaps in scholarly electrical engineering literature on a given topic. The user inputs the topic and optionally key papers or keywords.

Output: 

				
					For the electrical engineering topic: 
 {topic} 
 and considering the following key papers or keywords: 
 {key_papers_or_keywords} 
 analyze existing literature to identify knowledge gaps, underexplored areas, and opportunities for future research. Provide a structured text report with sections for each gap identified and supporting rationale.
							

AI Prompt to Summarize Latest Electrical Engineering Research Trends

This prompt guides the AI to summarize the latest research trends in a specified electrical engineering topic using current academic databases or its knowledge base. The user inputs the research topic and optionally a date range.

Output: 

				
					Using the research topic: 
 {research_topic} 
 and the date range: 
 {date_range} 
 please summarize the latest research trends in electrical engineering. Include key breakthroughs, emerging technologies, and dominant research themes. Format the summary in markdown with headings, bullet points, and references to seminal papers if possible.
							

AI Prompt to Adapt Electrical Engineering Report for International Audience

This prompt enables the AI to adapt a technical electrical engineering report to suit an international audience by adjusting units, terminology, and style. The user inputs the original report text and target region.

Output: 

				
					Adapt the following electrical engineering technical report text: 
 {original_report_text} 
 to suit an international audience from the target region: 
 {target_region} 
 Convert all units to the preferred system, adjust terminology and spellings, and simplify complex sentences while preserving technical accuracy. Provide the adapted text as a continuous paragraph with clear formatting.
							

AI Prompt to Simplify Electrical Jargon for Non-Engineers

This prompt instructs the AI to convert a list of electrical engineering technical terms and phrases into simple explanations understandable by non-engineers. The user provides the list of terms.

Output: 

				
					Given the following list of electrical engineering technical terms: 
 {technical_terms_list} 
 provide a JSON object where each term is a key and the value is a simple, clear explanation suitable for a non-engineer audience. Keep explanations concise and avoid technical jargon. Capitalize terms in keys.
							

AI Prompt to Convert Electrical Engineering Paper from English to German

This prompt asks the AI to translate a technical electrical engineering research paper excerpt from English to German, preserving all technical meanings and terminology. The user provides the excerpt text.

Output: 

				
					Translate the following electrical engineering research paper excerpt from English to German, ensuring all technical terms and jargon are accurately preserved: 
 {english_text_excerpt} 
 Provide the translated text in clear, formal German suitable for academic or professional use.
							
Table of Contents
    Ajoutez un en-tête pour commencer à générer la table des matières

    DESIGN or PROJECT CHALLENGE?
    Mechanical Engineer, Project or R&D Manager
    Effective product development

    Available for a new challenge on short notice in France & Swiss.
    Contact me on LinkedIn
    Plastic & metal products, Design-to-cost, Ergonomics, Medium to high-volume, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485 Class II & III

    We are looking for a new sponsor

     

    Your company or institution is into technique, science or research ?
    > send us a message <

    Receive all new articles
    Free, no spam, email not distributed nor resold

    or you can get your full membership -for free- to access all restricted content >here<

    Topics covered: test prompts, validation, user input, data collection, feedback mechanism, interactive testing, survey design, usability testing, software evaluation, experimental design, performance assessment, questionnaire, ISO 9241, ISO 25010, ISO 20282, ISO 13407, and ISO 26362..

    1. Lexi Peña

      No one discussing the potential bias in AI selection for these directories? AI isnt immune to prejudices, folks.

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Related Posts

    Scroll to Top

    You May Also Like