Casa » Bézout’s Theorem

Bézout’s Theorem

1779
  • Étienne Bézout

Bézout’s theorem is a fundamental statement in intersection theory. It asserts that the number of intersection points of two plane algebraic curves of degrees [latex]m[/latex] and [latex]n[/latex] is exactly [latex]mn[/latex], provided that one works in a projective plane over an algebraically closed field, counts points with multiplicity, and includes points at infinity where parallel asymptotes meet.

Bézout’s theorem elegantly quantifies the intersection of curves. In the standard affine plane, the number of intersections can be less than [latex]mn[/latex] for several reasons. First, some solutions might have complex coordinates. Second, lines that are parallel in the affine plane can be thought of as meeting at a ‘point at infinity’; moving to the projective plane [latex]\mathbb{P}^2[/latex] systematically includes these points. Third, some intersection points might be ‘degenerate’, such as a line being tangent to a circle. In this case, the single point of tangency must be counted with a multiplicity of two for the theorem to hold. The concept of intersection multiplicity is a crucial and subtle part of the theory that makes the count exact.

For example, a parabola ([latex]y=x^2[/latex], degree 2) and a line ([latex]y=ax+b[/latex], degree 1) should intersect at [latex]2 \times 1 = 2[/latex] points. This is clear when the line cuts through the parabola. When the line is tangent, there is one point, but it has multiplicity 2. If the line doesn’t intersect the parabola in the real plane, there are two intersection points with complex coordinates. The theorem generalizes to higher dimensions, stating that [latex]n[/latex] hypersurfaces of degrees [latex]d_1, \dots, d_n[/latex] in [latex]\mathbb{P}^n[/latex] intersect in exactly [latex]d_1 \cdots d_n[/latex] points, again, when counted properly.

UNESCO Nomenclature: 1105
– Geometry

Tipo

Abstract System

Disruption

Substantial

Utilizzo

Widespread Use

Precursors

  • coordinate geometry (descartes, fermat)
  • theory of polynomial equations (newton, maclaurin)
  • early concepts of projective geometry (desargues, pascal)
  • cramer’s paradox on the number of points defining a curve

Applicazioni

  • computer graphics (calculating intersections for ray tracing)
  • robotics (solving inverse kinematics for robot arms)
  • computational geometry and cad/cam systems
  • elimination theory for solving polynomial systems
  • celestial mechanics (analyzing orbits)

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: Bézout’s theorem, intersection theory, projective plane, algebraic curve, multiplicity, degree of a curve, polynomial system, points at infinity

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Mechanical Engineer, Project, Process Engineering or R&D Manager
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti