Home » Plasticity Theory

Plasticity Theory

1950
  • Henri Tresca
  • Richard von Mises
  • Daniel C. Drucker
  • William Prager

Plasticity is the theory describing the deformation of a solid material undergoing non-reversible changes of shape in response to applied forces. Unlike elasticity, where deformation is recovered upon unloading, plastic deformation is permanent. The theory involves a yield criterion to define the onset of plasticity, a flow rule to describe the evolution of plastic strain, and a hardening rule.

Plasticity theory provides the framework for analyzing materials stressed beyond their elastic limit. The transition from elastic to plastic behavior is governed by a yield criterion, which defines a surface in stress space (the yield surface). For stress states inside this surface, the material behaves elastically. When the stress state reaches the surface, plastic deformation begins. Two of the most common yield criteria for metals are the Tresca (maximum shear stress) and von Mises (maximum distortion energy) criteria.

Once yielding occurs, the evolution of plastic strain is described by a flow rule. The most common is the associated flow rule, which states that the increment of plastic strain occurs in a direction normal to the yield surface. This determines the relative proportions of plastic strain components.

Finally, a hardening rule describes how the yield surface changes as plastic deformation accumulates. Isotropic hardening assumes the yield surface expands uniformly in all directions, meaning the material’s yield strength increases equally regardless of the loading direction. Kinematic hardening, on the other hand, assumes the yield surface translates in stress space without changing its size, which is useful for modeling the Bauschinger effect observed in cyclic loading. More complex models combine both isotropic and kinematic hardening to accurately capture real material behavior under complex loading paths. These three components—yield criterion, flow rule, and hardening rule—form the core of classical plasticity theory.

UNESCO Nomenclature: 2208
– Mechanics

Type

Abstract System

Disruption

Substantial

Usage

Widespread Use

Precursors

  • Theory of linear elasticity
  • Observations of permanent set in metals by craftsmen and early engineers
  • Coulomb’s work on friction and soil mechanics
  • Development of tensor calculus

Applications

  • metal forming processes like rolling, forging, and extrusion
  • automotive crashworthiness analysis
  • design of structures to withstand earthquakes or impacts
  • geotechnical engineering for modeling soil behavior under heavy loads

Patents:

NA

Potential Innovations Ideas

Professionals (100% free) Membership Required

You must be a Professionals (100% free) member to access this content.

Join Now

Already a member? Log in here
Related to: plasticity, plastic deformation, yield criterion, flow rule, hardening, von Mises, Tresca, inelastic

Leave a Reply

Your email address will not be published. Required fields are marked *

AVAILABLE FOR NEW CHALLENGES
Mechanical Engineer, Project or R&D Manager
Effective product development

Available for a new challenge on short notice.
Contact me on LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

We are looking for a new sponsor

 

Your company or institution is into technique, science or research ?
> send us a message <

Receive all new articles
Free, no spam, email not distributed nor resold

or you can get your full membership -for free- to access all restricted content >here<

Related Invention, Innovation & Technical Principles

Scroll to Top

You May Also Like