Home » Nanotoxicology and Safety

Nanotoxicology and Safety

2000
Laboratory scene with a scientist studying nanoparticles for safety assessments in nanotoxicology.

Nanotoxicology is the study of the toxicity of nanomaterials. Due to their small size and high surface-area-to-volume ratio, nanoparticles can exhibit unexpected toxicity not seen in their bulk counterparts. They can potentially cross biological barriers like the blood-brain barrier, enter cells, and interact with biological systems in novel ways, raising concerns about health and environmental safety.

The unique physicochemical properties that make nanomaterials attractive for various applications also underlie their potential for adverse biological effects. Nanotoxicology investigates how these properties—including size, shape, surface chemistry, charge, and solubility—influence interactions with living organisms. A key concern is the ability of nanoparticles to translocate within the body after exposure through inhalation, ingestion, or skin contact. Their small size allows them to evade normal physiological clearance mechanisms, such as phagocytosis by macrophages in the lungs, and to access sensitive organs and tissues that are protected from larger particles.

Once inside the body, nanoparticles can induce toxicity through several mechanisms. One of the most studied is the generation of reactive oxygen species (ROS), leading to oxidative stress. The high surface area of nanoparticles provides a large interface for catalytic reactions that can produce free radicals, which in turn can damage cells by oxidizing proteins, lipids, and DNA. Another mechanism is inflammation, where the immune system recognizes the nanoparticles as foreign invaders, triggering a persistent inflammatory response that can lead to chronic disease. Furthermore, some nanomaterials, particularly fibrous ones like certain types of carbon nanotubes, have been compared to asbestos due to their high aspect ratio, raising concerns about carcinogenicity. The field aims to understand these mechanisms to establish dose-response relationships, identify hazardous materials, and guide the development of safer nanomaterials and handling protocols to mitigate risks for workers, consumers, and the environment.

UNESCO Nomenclature: 3109
– Pharmacology

Type

Scientific Discipline

Disruption

Incremental

Usage

Widespread Use

Precursors

  • the field of classical toxicology and pharmacology
  • occupational health studies on fine and ultrafine particles (e.g., from pollution, mining)
  • understanding of cellular biology and mechanisms of cell damage (e.g., oxidative stress)
  • the asbestos health crisis, which highlighted the risks of fibrous materials

Applications

  • regulatory guidelines for nanoparticle handling (e.g., by niosh, osha)
  • development of “safe-by-design” nanomaterials
  • risk assessment frameworks for consumer products containing nanoparticles
  • environmental monitoring for nanoparticle pollution
  • biocompatibility testing for medical nanodevices

Patents:

NA

Potential Innovations Ideas

Professionals (100% free) Membership Required

You must be a Professionals (100% free) member to access this content.

Join Now

Already a member? Log in here
Related to: nanotoxicology, safety, nanoparticle, toxicity, health risk, environmental impact, oxidative stress, inflammation, blood-brain barrier, regulation.

Leave a Reply

Your email address will not be published. Required fields are marked *

AVAILABLE FOR NEW CHALLENGES
Mechanical Engineer, Project, Process Engineering or R&D Manager
Effective product development

Available for a new challenge on short notice.
Contact me on LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

We are looking for a new sponsor

 

Your company or institution is into technique, science or research ?
> send us a message <

Receive all new articles
Free, no spam, email not distributed nor resold

or you can get your full membership -for free- to access all restricted content >here<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll to Top

You May Also Like