Home » Cleanroom Airflow Principles: Laminar and Turbulent Flow

Cleanroom Airflow Principles: Laminar and Turbulent Flow

1960

Cleanrooms utilize two primary airflow principles to control contamination. Turbulent (or non-unidirectional) flow involves mixed air streams, suitable for less stringent classes (ISO 6-9). Laminar (or unidirectional) flow uses parallel, constant-velocity air streams to sweep particles out of the environment, essential for high-purity applications like ISO 1-5, preventing cross-contamination and ensuring rapid particle removal.

The choice between turbulent and laminar airflow is a fundamental design decision in cleanroom engineering, driven by the required cleanliness level and cost constraints. Turbulent flow rooms, the more conventional design, supply HEPA-filtered air from ceiling-mounted diffusers. The air enters the room, mixes with the existing air, and removes contaminants as it exits through low-level exhausts. While effective for many applications, the random air currents can create eddies where particles may linger or settle.

In contrast, laminar flow, also known as unidirectional flow, creates a predictable, uniform movement of air. In a vertical laminar flow room, the entire ceiling is composed of HEPA or ULPA filters, and the air travels straight down to a perforated raised floor, acting like a massive, slow-moving piston that pushes particles out. This design provides the highest level of air cleanliness by minimizing the time a particle can remain airborne and preventing lateral movement of contaminants. Horizontal laminar flow systems are also used, where air moves from a filtered wall to an exhaust wall. While significantly more expensive to build and operate due to the large filter area and high air-change rates, laminar flow is non-negotiable for processes like microchip fabrication where a single sub-micron particle can destroy a device.

UNESCO Nomenclature: 2210
– Mechanics

Type

Physical Device

Disruption

Revolutionary

Usage

Widespread Use

Precursors

  • principles of fluid dynamics (Bernoulli’s principle, Reynolds number)
  • development of HEPA filtration technology
  • Willis Whitfield’s invention of the modern cleanroom
  • understanding of airborne particle transport mechanisms

Applications

  • semiconductor photolithography bays
  • sterile filling lines in pharmaceutical production
  • operating theaters for sensitive surgeries
  • satellite assembly and integration facilities
  • biological safety cabinets

Patents:

  • US3158457A

Potential Innovations Ideas

Professionals (100% free) Membership Required

You must be a Professionals (100% free) member to access this content.

Join Now

Already a member? Log in here
Related to: laminar flow, turbulent flow, unidirectional airflow, contamination control, cleanroom design, fluid dynamics, HEPA filter, particle removal

Leave a Reply

Your email address will not be published. Required fields are marked *

AVAILABLE FOR NEW CHALLENGES
Mechanical Engineer, Project, Process Engineering or R&D Manager
Effective product development

Available for a new challenge on short notice.
Contact me on LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

We are looking for a new sponsor

 

Your company or institution is into technique, science or research ?
> send us a message <

Receive all new articles
Free, no spam, email not distributed nor resold

or you can get your full membership -for free- to access all restricted content >here<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll to Top

You May Also Like