Maison » Viscoelasticity

Viscoelasticity

1850

Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like honey, resist shear flow and strain linearly with time when a stress is applied. Elastic materials, like a rubber band, strain when stretched and quickly return to their original state once the stress is removed. Viscoelastic materials have elements of both.

Viscoelastic behavior is a consequence of the time-dependent rearrangement of a material’s microstructure. When a stress is applied, some of the energy is stored elastically in the stretching or bending of molecular bonds, while some is dissipated as heat through the viscous sliding of molecules past one another. This dual behavior leads to several characteristic phenomena. One is creep, where the material continues to deform slowly over time under a constant load. Another is stress relaxation, where the stress required to maintain a constant strain decreases over time as the material’s internal structure rearranges.

This time-dependent response is often modeled using combinations of ideal springs (representing the elastic component, following Hooke’s Law) and dashpots (representing the viscous component, following Newton’s Law of Viscosity). Simple models like the Maxwell model (spring and dashpot in series) and the Kelvin-Voigt model (spring and dashpot in parallel) capture the basic features of stress relaxation and creep, respectively. More complex models, such as the Standard Linear Solid model, combine these elements to provide a more accurate description of real materials.

The behavior of viscoelastic materials is also highly dependent on temperature and the rate of applied strain. At low temperatures or high strain rates, they tend to behave more like elastic solids, while at high temperatures or low strain rates, they behave more like viscous fluids. This is known as the time-temperature superposition principle.

UNESCO Nomenclature: 2203
– Continuum mechanics

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • hooke’s law of elasticity (1660)
  • newton’s law of viscosity (1687)
  • early studies on the after-effects of elasticity by wilhelm weber (1835)
  • development of polymer science

Applications

  • memory foam mattresses
  • shock absorbers in vehicles
  • synthetic polymers and plastics
  • human tissues and biomechanics
  • vibration damping materials
  • pressure-sensitive adhesives

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: viscoelasticity, rheology, creep, stress relaxation, polymers, biomechanics, maxwell model, kelvin-voigt model

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi