A classic illustration of the Monte Carlo method is estimating the value of [latex]\pi[/latex]. By inscribing a circle of radius [latex]r[/latex] within a square of side length [latex]2r[/latex], the ratio of their areas is [latex]\frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}[/latex]. Randomly scattering points within the square and counting the fraction [latex]p[/latex] that fall inside the circle provides an estimate: [latex]\pi \approx 4p[/latex].
Monte Carlo Estimation of Pi
The procedure for estimating [latex]\pi[/latex] is straightforward and highlights the core Monte Carlo principle. Consider a unit square in the Cartesian plane with vertices at (0,0), (1,0), (1,1), and (0,1). A quarter circle of radius 1 is inscribed within this square, centered at the origin. The area of the square is 1, and the area of the quarter circle is [latex]\frac{\pi(1)^2}{4} = \frac{\pi}{4}[/latex]. The ratio of the quarter circle’s area to the square’s area is therefore [latex]\frac{\pi}{4}[/latex].
To estimate this ratio, we generate a large number, [latex]N[/latex], of random points [latex](x, y)[/latex] where both [latex]x[/latex] and [latex]y[/latex] are uniformly distributed between 0 and 1. Each point has an equal chance of landing anywhere within the square. A point [latex](x, y)[/latex] falls inside the quarter circle if its distance from the origin is less than or equal to 1, which is determined by the condition [latex]x^2 + y^2 \le 1[/latex]. We count the number of points, [latex]M[/latex], that satisfy this condition. The ratio [latex]\frac{M}{N}[/latex] is an estimate of the ratio of the areas, [latex]\frac{\pi}{4}[/latex]. Therefore, we can approximate [latex]\pi[/latex] as [latex]\pi \approx 4 \frac{M}{N}[/latex]. According to the law of large numbers, as [latex]N[/latex] approaches infinity, this approximation converges to the true value of [latex]\pi[/latex]. However, the convergence is slow, with the error decreasing proportionally to [latex]\frac{1}{\sqrt{N}}[/latex], making it a very inefficient méthode for calculating [latex]\pi[/latex] to high precision compared to deterministic algorithms.
Taper
Perturbation
Usage
Précurseurs
- concept of pi as the ratio of a circle’s circumference to its diameter
- cartesian coordinate system
- pythagorean theorem
- uniform probability distribution
- development of pseudo-random number generators
Applications
- pedagogical tool for teaching probability and simulation
- simple benchmark for random number generators
- introductory problem in computational science courses
Brevets:
Idées d'innovations potentielles
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Inventions, innovations et principes techniques connexes