Maison » Variétés différentiables (géom)

Variétés différentiables (géom)

1854
  • Bernhard Riemann
Parchemin détaillant les variétés différentiables dans une salle d'étude historique.

A differentiable manifold is a topological space that is locally similar to Euclidean space, allowing calculus to be applied. Each point has a neighborhood that is homeomorphic to an open subset of [latex]\mathbb{R}^n[/latex]. These local coordinate systems, called charts, are related by smooth transition functions, forming an atlas that defines the manifold’s differentiable structure.

A differentiable manifold is the central object of study in differential geometry. The concept formalizes the idea of a “curved space” of any dimension. While globally a manifold can be complex (like a sphere or a torus), locally, around any point, it looks like a flat piece of Euclidean space. This local “flatness” is key, as it allows us to use the tools of multivariable calculus.

The formal definition involves a set of points M, a topology on M, and an atlas. An atlas is a collection of charts, where each chart is a pair (U, φ), with U being an open subset of M and φ being a homeomorphism from U to an open subset of [latex]\mathbb{R}^n[/latex]. For any two overlapping charts, (U, φ) and (V, ψ), the transition map [latex]\psi \circ \phi^{-1}[/latex] from [latex]\phi(U \cap V)[/latex] to [latex]\psi(U \cap V)[/latex] must be a diffeomorphism (infinitely differentiable with a differentiable inverse). This compatibility condition ensures that calculus performed in one coordinate system is consistent with calculus performed in another.

This structure allows for the definition of tangent spaces, vector fields, and differential forms on the manifold, independent of any particular coordinate system. It provides a cadre for studying geometry intrinsically, without needing to embed the space in a higher-dimensional ambient space.

UNESCO Nomenclature: 1204
- Géométrie

Type

Système abstrait

Perturbation

Fondamentaux

Utilisation

Une utilisation répandue

Précurseurs

  • géométrie euclidienne
  • Géométries non euclidiennes (Lobachevsky, Bolyai)
  • Théorie des surfaces de Carl Friedrich Gauss
  • Systèmes de coordonnées de René Descartes
  • Premiers concepts de topologie

Applications

  • relativité générale (l'espace-temps est modélisé comme une variété lorentzienne 4D)
  • robotique (configuration spaces of robots are manifolds)
  • infographie (représentant des surfaces complexes)
  • théorie des cordes
  • classical mécanique (phase space is a symplectic manifold)

Brevets :

NA

Innovations potentielles Idées

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: manifold, topology, differentiable structure, atlas, chart, euclidean space, calculus, geometry.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Contexte historique

(si la date est inconnue ou n'est pas pertinente, par exemple "mécanique des fluides", une estimation arrondie de son émergence notable est fournie)

Invention, innovation et principes techniques connexes

Retour en haut

Vous aimerez peut-être aussi