Hogar » Filtración estéril

Filtración estéril

1880
  • Charles Chamberland
Aparato de filtración estéril para aplicaciones microbiológicas en sala blanca.

(generate image for illustration only)

A physical sterilization método that removes microorganisms from liquids and gases by passing them through a filter with a pore size small enough to retain the microbes. A common pore size for sterilizing filtration is 0.22 micrometers (µm), which effectively removes most bacteria. This technique does not kill microorganisms but physically separates them, making it ideal for heat-labile solutions.

Sterile filtration is a unique sterilization method because it does not inactivate or kill microorganisms but rather physically removes them from a fluid (liquid or gas). The process relies on a membrane filter, a thin layer of semi-permeable material engineered with a specific pore size distribution. For sterilization, a filter with a nominal pore rating of 0.22 micrometers (µm) or smaller is typically used. This size is chosen based on the dimensions of the smallest known free-living bacteria, such as Brevundimonas diminuta, which is often used as the challenge organism for validating sterilizing-grade filters. As the fluid is forced through the filter by positive pressure or vacuum, the pores allow the fluid molecules to pass through but are small enough to trap bacteria and other microorganisms on the filter’s surface. The primary mechanism of retention is size exclusion, but other effects like electrostatic attraction and tortuous path interception can also contribute to capture. This method is indispensable for solutions containing heat-labile components, such as proteins, enzymes, vaccines, and certain antibiotics, which would be denatured or destroyed by heat-based methods like autoclaving. It is considered a non-destructive sterilization technique. However, it has limitations. It cannot remove all viruses, as many are smaller than 0.22 µm, nor can it remove dissolved endotoxins or pyrogens. The process must also be conducted under aseptic conditions to prevent recontamination of the filtered fluid downstream of the filter.

The history of filtration for microbial removal dates back to the late 19th century. In 1884, Charles Chamberland, an associate of Louis Pasteur, developed the Chamberland filter made of unglazed porcelain. This device was instrumental in early virology; it was used by Dmitri Ivanovsky in 1892 and Martinus Beijerinck in 1898 to demonstrate that the agent causing tobacco mosaic disease was smaller than any known bacterium, as it could pass through the filter. They called this new class of infectious agent a ‘filterable virus.’ These early filters were effective but slow and brittle. The technology evolved significantly throughout the 20th century with the development of modern membrane filters made from materials like cellulose esters, nylon, and polysulfone. These new materials allowed for the creation of filters with highly controlled pore sizes, greater durability, and higher flow rates, making sterile filtration a reliable and scalable process for the pharmaceutical, biotechnology, and food and beverage industries.

UNESCO Nomenclature: 2401
- Microbiología

Tipo

Proceso físico

Disrupción

Sustancial

Utilización

Uso generalizado

Precursores

  • louis pasteur’s work on fermentation and germ theory
  • avances en la ciencia de la porcelana y los materiales
  • la necesidad de aislar bacterias y virus de los líquidos

Aplicaciones

  • Esterilización de productos farmacéuticos sensibles al calor, como vacunas y soluciones proteicas.
  • Purificación de agua en laboratorios y fábricas
  • air filtration in cleanrooms and biological safety cabinets (hepa filters)
  • Clarificación y esterilización de bebidas como cerveza y vino

Patentes:

NA

Posibles ideas innovadoras

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: sterile filtration, membrane filter, 0.22 micron, physical removal, heat-labile, pharmaceuticals, aseptic, hepa, virology, chamberland filter.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Contexto histórico

Filtración estéril

1800
1834-01-01
1880
1910
1921
1940
1950
1950
1800-05-02
1880
1902
1920
1930
1940
1950

(si se desconoce la fecha o no es relevante, por ejemplo "mecánica de fluidos", se ofrece una estimación redondeada de su notable aparición)

Invención, innovación y principios técnicos relacionados

Scroll al inicio

También te puede interesar