Heim » The Wave Equation (physics)

The Wave Equation (physics)

1747
  • Jean le Rond d’Alembert

A second-order linear hyperbolic partial differential equation that governs the propagation of various types of waves. In its simplest form, it is written as [latex]\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u[/latex], where [latex]u(\vec{x},t)[/latex] is the amplitude of the wave, [latex]c[/latex] is the wave speed, and [latex]\nabla^2[/latex] is the Laplace operator. It models phenomena like vibrating strings, sound waves, and light waves.

The wave equation is the archetypal hyperbolic PDE. Unlike the heat equation, it is second-order in time, which gives rise to its oscillatory, wave-like solutions. The presence of the [latex]\frac{\partial^2 u}{\partial t^2}[/latex] term implies that acceleration is proportional to the local curvature of the function, a relationship characteristic of restorative forces like tension in a string. The constant [latex]c[/latex] represents the finite speed at which disturbances propagate through the medium.

A crucial feature of the wave equation is the principle of causality and finite propagation speed. A disturbance at a point [latex]\vec{x}_0[/latex] at time [latex]t_0[/latex] can only affect points [latex]\vec{x}[/latex] at a later time [latex]t[/latex] that are within a distance of [latex]c(t-t_0)[/latex]. This region is known as the ‘cone of influence’. Conversely, the value of the solution at [latex](\vec{x}, t)[/latex] depends only on the initial data within its ‘domain of dependence’. This contrasts sharply with the infinite propagation speed of the heat equation.

In one spatial dimension, the equation [latex]u_{tt} = c^2 u_{xx}[/latex] has a remarkably simple general solution, discovered by d’Alembert: [latex]u(x,t) = F(x-ct) + G(x+ct)[/latex]. This represents the superposition of two waves traveling in opposite directions with speed [latex]c[/latex]. The shapes of these waves, determined by the functions [latex]F[/latex] and [latex]G[/latex], are preserved as they propagate.

UNESCO Nomenclature: 1208
– Mathematical physics

Typ

Abstract System

Disruption

Foundational

Verwendung

Widespread Use

Precursors

  • newton’s laws of motion
  • hooke’s law for elastic forces
  • development of calculus and partial derivatives
  • studies of vibrating strings by brook taylor and johann bernoulli

Anwendungen

  • acoustics and audio engineering
  • electromagnetism (propagation of light and radio waves)
  • seismology for modeling earthquakes
  • fluid dynamics for surface waves
  • general relativity for gravitational waves

Patente:

DAS

Potential Innovations Ideas

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: wave equation, hyperbolic pde, d’alembert’s formula, wave propagation, acoustics, electromagnetism, speed of light, mathematical physics

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Nach oben scrollen

Das gefällt dir vielleicht auch