Heim » Homeomorphism

Homeomorphism

1895
  • Henri Poincaré

A homeomorphism is a continuous function between two topological spaces that has a continuous inverse function. Two topological spaces are called homeomorphic if such a function exists. From a topological viewpoint, homeomorphic spaces are identical. This concept captures the idea that an object can be stretched, bent, or deformed into another without tearing or gluing, like a coffee mug into a donut.

More formally, a function [latex]f: X \to Y[/latex] between two topological spaces [latex](X, \tau_X)[/latex] and [latex](Y, \tau_Y)[/latex] is a homeomorphism if it is a bijection, it is continuous, and its inverse [latex]f^{-1}: Y \to X[/latex] is also continuous. The condition that the inverse must also be continuous is crucial. For example, the function [latex]f: [0, 2\pi) \to S^1[/latex] defined by [latex]f(t) = (\cos(t), \sin(t))[/latex] is a continuous bijection from a half-open interval to a circle, but its inverse is not continuous at the point (1,0), so it is not a homeomorphism. Homeomorphism is an equivalence relation on the class of all topological spaces. The resulting equivalence classes are called homeomorphism classes. The central problem in topology is to determine whether two given topological spaces are homeomorphic. To do this, topologists find topological invariants—properties of spaces that are preserved under homeomorphisms. If two spaces do not share an invariant, they cannot be homeomorphic. Examples of topological invariants include connectedness, compactness, and the fundamental group.

UNESCO Nomenclature: 1209
– Topology

Typ

Abstract System

Disruption

Foundational

Verwendung

Widespread Use

Precursors

  • Leonhard Euler’s work on graph theory and polyhedra
  • August Ferdinand Möbius’s discovery of the Möbius strip
  • Felix Klein’s Erlangen program
  • The development of continuous functions by Cauchy and Weierstrass

Anwendungen

  • classification of geometric objects
  • knot theory
  • topological data analysis
  • computer graphics and 3d modeling
  • robotics and motion planning

Patente:

DAS

Potential Innovations Ideas

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: homeomorphism, continuous deformation, topological equivalence, donut, coffee mug, topological invariant, bijection, continuous function

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Nach oben scrollen

Das gefällt dir vielleicht auch