» Physics of Failure (PoF)

Physics of Failure (PoF)

1980

Physics of Failure (PoF) is a reliability engineering approach that uses knowledge of materials science and physics to understand and model the root-cause mechanisms of failure. Instead of relying purely on statistical data from past failures, it focuses on predicting failure by analyzing the physical processes (e.g., fatigue, corrosion, creep) that lead to degradation and breakdown.

The Physics of Failure approach represents a shift from the empirical, statistical methods (like relying on MTBF from handbooks) to a more science-based, deterministic methodology. The core idea is to prevent failures at the design stage by understanding how the stresses of manufacturing, shipping, and operation interact with the materials and geometry of a component to initiate and propagate failure mechanisms.

Key activities in a PoF analysis include: identifying potential failure mechanisms and sites, creating a load profile (thermal, mechanical, electrical, chemical stresses), and using mathematical models to predict the time to failure. For example, Coffin-Manson models can be used to predict low-cycle fatigue life under thermal cycling, while Arrhenius models can predict the acceleration of chemical degradation processes with temperature.

This approach is particularly valuable for new 技术 or applications where historical failure data is unavailable. By focusing on the fundamental science, engineers can design for reliability, select appropriate materials, and define realistic testing protocols that target specific failure mechanisms, leading to more robust and durable products without the need for extensive trial-and-error testing.

UNESCO Nomenclature: 2210
– Physics

类型

Abstract System

Disruption

Substantial

使用方法

Niche/Specialized

Precursors

  • materials science and solid-state physics
  • fracture 机械 developed by A. A. Griffith
  • continuum mechanics and stress-strain analysis
  • models for chemical reaction kinetics (e.g., Arrhenius equation)
  • finite element analysis (fea) software

应用

  • designing reliable microelectronics by modeling electromigration and thermal fatigue in solder joints
  • predicting the lifetime of turbine blades in jet engines based on creep and fatigue models
  • assessing the durability of structures like bridges against corrosion and material degradation
  • developing more accurate accelerated life tests for new materials and technologies

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: physics of failure, pof, root cause analysis, failure mechanism, materials science, reliability physics, degradation, accelerated testing

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢