The Finite Volume Method (FVM) is a dominant numerical technique in CFD for solving partial differential equations. It discretizes the domain into a mesh of control volumes and applies the governing equations in their integral form to each volume. By converting volume integrals to surface integrals using the divergence theorem, it focuses on calculating the flux of conserved properties across cell faces.
Finite Volume Method (FVM)
- Suhas V. Patankar (popularized)
The Finite Volume Method’s strength lies in its approach to discretization, which is particularly well-suited for fluid dynamics problems governed by conservation laws. The process begins by dividing the geometric domain into a set of non-overlapping control volumes, or cells, which collectively form a mesh. The governing partial differential equations are then integrated over each of these control volumes.
A key step is the application of the Gauss-Divergence theorem, which transforms volume integrals of divergence terms into surface integrals of fluxes across the cell boundaries. For a generic conserved scalar [latex]\phi[/latex], the conservation equation in integral form is [latex]\frac{\partial}{\partial t} \int_V \phi dV + \oint_S \mathbf{F} \cdot d\mathbf{S} = \int_V Q dV[/latex], where [latex]\mathbf{F}[/latex] is the flux vector and [latex]Q[/latex] is a source term. The FVM discretizes this exact equation, approximating the surface and volume integrals. The flux across each face is calculated, often using interpolation schemes to find the value of [latex]\phi[/latex] at the cell face from the values stored at the cell centers.
This flux-based approach ensures that the quantity [latex]\phi[/latex] is conserved perfectly at the discrete level, both locally for each cell and globally for the entire domain. This property of exact conservation is a major advantage over methods like the Finite Difference 方法 and makes FVM robust and physically realistic, especially when dealing with shocks or sharp gradients in the flow. It is also flexible in handling unstructured meshes, which are necessary for modeling complex geometries.
类型
Disruption
使用方法
Precursors
- Integral Calculus and the Gauss-Divergence Theorem
- Finite Difference Method (FDM)
- Concept of Conservation Laws in Physics
- Early work on numerical solutions to PDEs by Courant, Friedrichs, and Lewy
- Development of unstructured meshing techniques
应用
- aerospace engineering for external aerodynamics
- automotive design for drag reduction and cooling
- hvac system design and analysis
- 化学过程 engineering for reactor modeling
- environmental engineering for pollutant dispersal in air and water
- heat transfer analysis in electronics
专利:
迎接新挑战
机械工程师、项目或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
Related Invention, Innovation & Technical Principles