Home » Pulse-Echo Ultrasonic Testing

Pulse-Echo Ultrasonic Testing

1940
  • Floyd Firestone
Technician conducting pulse-echo ultrasonic testing on a metal pipe in a laboratory.

The pulse-echo method is the foundation of most ultrasonic testing. A transducer emits a short, high-frequency sound pulse into a material. This pulse travels until it hits a boundary or flaw, reflecting some energy back as an echo. The same transducer detects this echo, and the time-of-flight is used to calculate the reflector’s depth, enabling flaw detection and thickness measurement.

The pulse-echo technique operates on a simple principle of timing sound waves. A specialized device called a pulser-receiver generates a high-voltage electrical pulse. This pulse is sent to a transducer, which contains a piezoelectric element that vibrates in response, creating a high-frequency ultrasonic wave. This wave propagates through the test material. When it encounters an interface with a different acoustic impedance, such as a crack, void, or the back wall of the material, a portion of the wave’s energy is reflected.

The reflected wave, or echo, travels back to the transducer. The piezoelectric element converts this returning acoustic energy back into an electrical signal. The receiver component of the pulser-receiver amplifies this weak signal. The system’s internal clock measures the precise time elapsed between the initial pulse transmission and the reception of the echo. This is known as the ‘time-of-flight’ (ToF).

Knowing the velocity of sound in the specific material being tested (\(c\)), the distance (\(d\)) to the reflector can be calculated using the formula \(d = (c times ToF) / 2\). The division by two is necessary because the measured time accounts for the sound traveling to the reflector and back again. The results are typically displayed on a screen as an A-scan, which plots signal amplitude versus time, allowing a trained operator to identify the location, size, and orientation of internal flaws.

UNESCO Nomenclature: 3322
– Materials science

Type

Testing Method

Disruption

Revolutionary

Usage

Widespread Use

Precursors

  • sonar development for underwater detection
  • discovery of the piezoelectric effect by Jacques and Pierre Curie
  • fundamental understanding of sound wave propagation in solids
  • industrial need for internal flaw detection in manufacturing and infrastructure

Applications

  • weld inspection in critical structures
  • thickness gauging of pipes and tanks
  • medical ultrasonography for imaging organs
  • aerospace composite material inspection for delamination
  • corrosion mapping in the oil and gas industry

Patents:

  • US2280226

Potential Innovations Ideas

Professionals (100% free) Membership Required

You must be a Professionals (100% free) member to access this content.

Join Now

Already a member? Log in here
Related to: pulse-echo, ultrasonic testing, NDT, flaw detection, time-of-flight, transducer, reflection, inspection, materials testing, Floyd Firestone.

Leave a Reply

Your email address will not be published. Required fields are marked *

AVAILABLE FOR NEW CHALLENGES
Mechanical Engineer, Project, Process Engineering or R&D Manager
Effective product development

Available for a new challenge on short notice.
Contact me on LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

We are looking for a new sponsor

 

Your company or institution is into technique, science or research ?
> send us a message <

Receive all new articles
Free, no spam, email not distributed nor resold

or you can get your full membership -for free- to access all restricted content >here<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll to Top

You May Also Like