Maison » Quantum Statistics

Quantum Statistics

1926
  • Satyendra Nath Bose
  • Albert Einstein
  • Enrico Fermi
  • Paul Dirac

Quantum statistics modifies classical statistical mechanics to account for the indistinguishability of identical particles. It splits into two types: Fermi-Dirac statistics for fermions (half-integer spin particles like electrons), which obey the Pauli exclusion principle, and Bose-Einstein statistics for bosons (integer spin particles like photons), which can occupy the same quantum state. This distinction is crucial at low temperatures and high densities.

Classical Maxwell-Boltzmann statistics assumes that particles in a system are distinguishable, meaning one could, in principle, label and track each one. However, quantum mécanique revealed that identical particles are fundamentally indistinguishable. This leads to profound changes in how microstates are counted. For bosons, multiple particles can occupy a single energy state, leading to an enhanced probability of collective behavior. The average occupation number of a state with energy [latex]\epsilon_i[/latex] is given by the Bose-Einstein distribution: [latex]\langle n_i \rangle_{BE} = \frac{1}{e^{(\epsilon_i – \mu)/k_B T} – 1}[/latex]. This can lead to a macroscopic number of particles collapsing into the ground state at low temperatures, forming a Bose-Einstein condensate.

For fermions, the Pauli exclusion principle forbids any two identical particles from occupying the same quantum state. This ‘repulsive’ statistical effect gives rise to the structure of atoms and the stability of matter. The average occupation number is given by the Fermi-Dirac distribution: [latex]\langle n_i \rangle_{FD} = \frac{1}{e^{(\epsilon_i – \mu)/k_B T} + 1}[/latex]. This function is always less than or equal to 1. At absolute zero, fermions fill up all available energy levels up to a maximum energy called the Fermi energy. This creates a ‘Fermi sea’ and is responsible for the pressure that supports white dwarf stars against gravitational collapse. At high temperatures, both quantum distributions converge to the classical Maxwell-Boltzmann distribution.

UNESCO Nomenclature: 2211
– Thermodynamics

Type

Abstract System

Disruption

Revolutionary

Utilisation

Widespread Use

Precursors

  • Planck’s law of black-body radiation, which implicitly treated photons as bosons
  • The Pauli exclusion principle, which is the foundation of Fermi-Dirac statistics
  • De Broglie’s hypothesis of wave-particle duality
  • Classical Maxwell-Boltzmann statistical mechanics

Applications

  • semiconductor physics and the operation of transistors
  • superconductivity and superfluidity
  • the theory of white dwarf and neutron stars
  • the operation of lasers (based on properties of bosons)
  • bose-einstein condensates

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: quantum statistics, Fermi-Dirac, Bose-Einstein, fermions, bosons, Pauli exclusion principle, Bose-Einstein condensate, quantum mechanics

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi