Maison » Laplace’s Equation

Laplace’s Equation

1780
  • Pierre-Simon Laplace

A second-order linear elliptic partial differential equation that describes systems in a steady-state or equilibrium condition. It is written as [latex]nabla^2 u = 0[/latex] or [latex]Delta u = 0[/latex], where [latex]nabla^2[/latex] (or [latex]Delta[/latex]) is the Laplace operator. Solutions, called harmonic functions, are the smoothest possible functions and represent potentials in fields like electrostatics, gravitation, and fluid flow.

Laplace’s equation is the canonical elliptic PDE. It arises in numerous physical contexts where a quantity is in equilibrium and its value at a point is the average of its values in the surrounding neighborhood. This averaging property is a defining characteristic of its solutions, known as harmonic functions. A direct consequence is the ‘maximum principle’ for harmonic functions, which states that a non-constant solution cannot attain its maximum or minimum value in the interior of its domain; these extrema must lie on the boundary. This prevents, for example, a hot spot from existing in a region of steady-state heat flow unless there is a source there (which would violate [latex]nabla^2 u = 0[/latex]).

Solutions to Laplace’s equation are infinitely differentiable (analytic) even if the boundary conditions are not. This is a remarkable smoothing property, even stronger than that of the heat equation. The problem of finding a solution to Laplace’s equation in a domain given the values of the solution on the boundary is known as the Dirichlet problem. The related Neumann problem specifies the normal derivative on the boundary.

Unlike the time-dependent heat and wave equations, Laplace’s equation is typically solved for boundary value problems, where the entire boundary of a spatial domain influences the solution at every interior point simultaneously. This ‘global’ dependence contrasts with the causal, time-marching nature of parabolic and hyperbolic equations.

UNESCO Nomenclature: 1208
– Mathematical physics

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • newton’s law of universal gravitation
  • coulomb’s law of electrostatics
  • concept of a potential field by lagrange
  • development of multivariable calculus and the laplace operator

Applications

  • electrostatics for calculating electric potential in charge-free regions
  • gravitation for determining gravitational potential
  • steady-state heat conduction
  • incompressible and irrotational fluid flow
  • describing the shape of a soap film stretched across a wire frame

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: laplace’s equation, elliptic pde, harmonic function, potential theory, steady-state, electrostatics, boundary value problem, dirichlet problem

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi