Maison » Courant–Friedrichs–Lewy Condition

Courant–Friedrichs–Lewy Condition

1928
  • Richard Courant
  • Kurt Friedrichs
  • Hans Lewy

The Courant–Friedrichs–Lewy (CFL) condition is a necessary stability criterion for numerical solutions of hyperbolic partial differential equations using explicit time-integration schemes. It dictates that the time step size must be small enough that information does not travel further than one spatial grid cell per time step. For a 1D case, [latex]C = u \frac{\Delta t}{\Delta x} \le C_{max}[/latex], ensuring numerical stability.

The CFL condition is a fundamental concept governing the stability of explicit time-marching numerical methods. It arises from the principle that the numerical domain of dependence of a grid point must contain the physical domain of dependence. In simpler terms, for a calculation at a grid point (i) at the next time step (n+1), the numerical scheme uses information from neighboring points at the current time step (n). The CFL condition ensures that any physical phenomenon (like a pressure wave) that could have reached point (i) in the time interval [latex]\Delta t[/latex] must have originated from within that set of neighboring points.

In the formula [latex]C = \frac{u \Delta t}{\Delta x} \le C_{max}[/latex], [latex]C[/latex] is the dimensionless Courant number, [latex]u[/latex] is the maximum wave propagation speed in the system (e.g., fluid velocity plus the speed of sound for compressible flow), [latex]\Delta t[/latex] is the time step, and [latex]\Delta x[/latex] is the grid spacing. The value of [latex]C_{max}[/latex] depends on the specific numerical scheme but is often on the order of 1. If the condition is violated ([latex]C > C_{max}[/latex]), the numerical solution becomes unstable, with errors growing exponentially, leading to a non-physical, divergent result. This imposes a severe restriction on the time step size, especially in meshes with very fine cells ([latex]\Delta x[/latex] is small), making explicit methods computationally expensive for certain problems. Implicit methods, while more complex per time step, are often unconditionally stable and not subject to the CFL constraint, allowing for much larger time steps.

UNESCO Nomenclature: 1208
– Numerical Analysis

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • Finite Difference Méthode
  • Theory of Partial Differential Equations (specifically hyperbolic equations)
  • Concept of numerical stability and convergence
  • Von Neumann stability analysis

Applications

  • ensuring stability in weather prediction models
  • controlling time step size in aerodynamic simulations
  • simulating wave propagation in acoustics and electromagnetics
  • financial modeling of options pricing using explicit finite difference methods
  • seismic wave modeling for oil and gas exploration
  • simulations in plasma physics and astrophysics

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: cfl condition, numerical stability, explicit method, time-marching, hyperbolic pde, courant number, time step, convergence

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi