Interpolation is the computational process within a CNC controller that generates a sequence of intermediate coordinate points to create a smooth path between programmed endpoints. The most fundamental types are linear interpolation (G01) for straight lines and circular interpolation (G02/G03) for arcs. This allows complex profiles to be machined from simple geometric commands in the G-code program.
CNC Motion Interpolation
The interpolator is the mathematical heart of a CNC controller. Without it, a machine could only move from one absolute point to another in a disjointed, ‘point-to-point’ fashion. The interpolator enables ‘contouring’, or continuous path control, which is essential for all modern machining. When the controller reads a G-code block like ‘G01 X10 Y20’, it knows the current position (e.g., X0 Y0) and the target position. The interpolator’s job is to break down this single vector into a series of very small, discrete step commands for each axis moteur (e.g., X and Y). It calculates the required velocity for each axis so that they start and stop simultaneously, resulting in a perfectly straight line between the two points. The algorithm used is often a variation of a Digital Differential Analyzer (DDA) or Bresenham’s line algorithm.
For circular interpolation (G02/G03), the calculation is more complex. The G-code provides the start point (current position), the end point, and the center of the circle (or the radius). The interpolator must then calculate a series of intermediate points that lie on the specified arc. It does this by solving the circle equation incrementally, generating coordinated velocity commands for the X and Y axes that maintain the correct tangential speed and radial distance. Advanced CNC controllers feature higher-order interpolation, such as helical (combining circular motion with linear motion in a third axis), spline, or NURBS (Non-Uniform Rational B-Spline) interpolation. NURBS interpolation is particularly powerful as it allows the machine to follow complex, free-form curves defined by a single mathematical equation, resulting in smoother motion and better surface finishes than approximating the curve with many small linear segments.
Type
Perturbation
Utilisation
Précurseurs
- coordinate geometry (cartesian and polar systems)
- differential equations describing motion
- development of digital computing hardware
- numerical analysis methods like the digital differential analyzer (DDA)
Applications
- machining of curved surfaces and complex geometries
- robot arm trajectory planning
- 3d printing layer path generation
- automated welding along non-linear seams
- computer graphics for rendering smooth curves
- automated inspection and scanning paths
Brevets :
Innovations potentielles Idées
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Invention, innovation et principes techniques connexes