Maison » Théorème de Bézout

Théorème de Bézout

1779
  • Étienne Bézout
Salle d'étude d'Étienne Bézout présentant le théorème de Bézout et les courbes algébriques.

(generate image for illustration only)

Bézout’s theorem is a fundamental statement in intersection theory. It asserts that the number of intersection points of two plane algebraic curves of degrees [latex]m[/latex] and [latex]n[/latex] is exactly [latex]mn[/latex], provided that one works in a projective plane over an algebraically closed field, counts points with multiplicity, and includes points at infinity where parallel asymptotes meet.

Bézout’s theorem elegantly quantifies the intersection of curves. In the standard affine plane, the number of intersections can be less than [latex]mn[/latex] for several reasons. First, some solutions might have complex coordinates. Second, lines that are parallel in the affine plane can be thought of as meeting at a ‘point at infinity’; moving to the projective plane [latex]\mathbb{P}^2[/latex] systematically includes these points. Third, some intersection points might be ‘degenerate’, such as a line being tangent to a circle. In this case, the single point of tangency must be counted with a multiplicity of two for the theorem to hold. The concept of intersection multiplicity is a crucial and subtle part of the theory that makes the count exact.

For example, a parabola ([latex]y=x^2[/latex], degree 2) and a line ([latex]y=ax+b[/latex], degree 1) should intersect at [latex]2 \times 1 = 2[/latex] points. This is clear when the line cuts through the parabola. When the line is tangent, there is one point, but it has multiplicity 2. If the line doesn’t intersect the parabola in the real plane, there are two intersection points with complex coordinates. The theorem generalizes to higher dimensions, stating that [latex]n[/latex] hypersurfaces of degrees [latex]d_1, \dots, d_n[/latex] in [latex]\mathbb{P}^n[/latex] intersect in exactly [latex]d_1 \cdots d_n[/latex] points, again, when counted properly.

UNESCO Nomenclature: 1105
- Géométrie

Taper

Système abstrait

Perturbation

Substantiel

Usage

Utilisation généralisée

Précurseurs

  • géométrie des coordonnées (Descartes, Fermat)
  • theory of polynomial equations (newton, maclaurin)
  • premiers concepts de la géométrie projective (Desargues, Pascal)
  • cramer’s paradox on the number of points defining a curve

Applications

  • infographie (calcul des intersections pour le lancer de rayons)
  • robotique (résolution de la cinématique inverse pour les bras de robot)
  • géométrie computationnelle et systèmes CAO/FAO
  • théorie de l'élimination pour résoudre les systèmes polynomiaux
  • mécanique céleste (analyse des orbites)

Brevets:

NA

Idées d'innovations potentielles

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: Bézout’s theorem, intersection theory, projective plane, algebraic curve, multiplicity, degree of a curve, polynomial system, points at infinity.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Contexte historique

(si la date est inconnue ou non pertinente, par exemple « mécanique des fluides », une estimation arrondie de son émergence notable est fournie)

Inventions, innovations et principes techniques connexes

Retour en haut

Vous aimerez peut-être aussi