The Reynolds number ([latex]\text{Re}[/latex]) is a dimensionless quantity in fluid mechanics used to predict flow patterns by representing the ratio of inertial forces to viscous forces. Low Reynolds numbers characterize smooth, orderly laminar flow, while high Reynolds numbers indicate chaotic, eddy-filled turbulent flow. It is crucial for determining the dynamic behavior of a fluid and for scaling experiments.
Reynolds Number
- Osborne Reynolds
The Reynolds number is defined as [latex]\text{Re} = \frac{\rho u L}{\mu} = \frac{u L}{\nu}[/latex], where [latex]\rho[/latex] is the fluid density, [latex]u[/latex] is a characteristic velocity, [latex]L[/latex] is a characteristic linear dimension, [latex]\mu[/latex] is the dynamic viscosity, and [latex]\nu[/latex] is the kinematic viscosity. Inertial forces are related to the momentum of the fluid, which tend to cause fluid motion to persist, while viscous forces are frictional forces that tend to resist this motion and smooth out disturbances. When viscous forces dominate (low [latex]\text{Re}[/latex]), any perturbations in the flow are damped out, resulting in a smooth, layered laminar flow. Conversely, when inertial forces dominate (high [latex]\text{Re}[/latex]), small disturbances can grow and evolve into chaotic eddies and vortices, leading to turbulence.
The transition from laminar to turbulent flow is not abrupt but typically occurs over a range of Reynolds numbers. For flow in a pipe, this transition is generally observed around [latex]\text{Re} approx 2300-4000[/latex]. This transition is of immense practical importance; for example, turbulent flow in a pipe causes significantly higher frictional losses and requires more pumping power than laminar flow.
One of the most powerful applications of the Reynolds number is in the principle of dynamic similitude. If two geometrically similar flow situations have the same Reynolds number (and other relevant dimensionless numbers), their flow patterns will be dynamically similar. This allows engineers to test a small-scale model of an airplane in a wind tunnel and, by matching the Reynolds number, obtain results that accurately predict the aerodynamic forces on the full-scale aircraft.
Tipo
Disruption
Utilización
Precursors
- navier–stokes equations
- studies on viscosity by newton and poisseuille
- concept of dimensional analysis from fourier and others
- earlier observations of laminar and turbulent flow by gotthilf hagen
Aplicaciones
- design of aircraft wings and ship hulls to manage turbulence
- modeling blood flow in the circulatory system
- engineering of pipelines for oil and water
- scaling fluid dynamics problems from small models to full size in wind tunnels
- mixing processes in chemical engineering
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Related Invention, Innovation & Technical Principles