Hogar » Las mejores indicaciones de IA para ingeniería eléctrica

Las mejores indicaciones de IA para ingeniería eléctrica

La IA impulsa la ingeniería eléctrica
Ai prompts para ingeniería eléctrica
Las herramientas basadas en la inteligencia artificial están revolucionando la ingeniería eléctrica al mejorar la eficacia del diseño, la precisión de la simulación y el mantenimiento predictivo mediante técnicas avanzadas de análisis de datos y diseño generativo.

Las herramientas de IA en línea están transformando rápidamente la ingeniería eléctrica al aumentar las capacidades humanas en diseño de circuitos, análisis de sistemas, electrónica fabricacióny mantenimiento de sistemas eléctricos. Estos sistemas de IA pueden procesar grandes cantidades de datos de simulación, lecturas de sensores y tráfico de red, identificar anomalías complejas o cuellos de botella en el rendimiento y generar nuevas topologías de circuitos o algoritmos de control mucho más rápido que los métodos tradicionales. Por ejemplo, la IA puede ayudarle a optimizar los diseños de las placas de circuito impreso para garantizar la integridad de la señal y la fabricabilidad, acelerar complejas simulaciones electromagnéticas o de flujo de potencia, predecir las características de los dispositivos semiconductores y automatizar una amplia gama de tareas. tratamiento de señales y tareas de análisis de datos.

Las indicaciones que se ofrecen a continuación ayudarán, por ejemplo, en el diseño generativo de antenas o filtros, acelerarán las simulaciones (SPICE, simulaciones de campo electromagnético, análisis de estabilidad del sistema eléctrico), ayudarán en el mantenimiento predictivo en el que la IA analiza los datos de los sensores de los transformadores eléctricos o los componentes de la red para prever posibles fallos, lo que permite un mantenimiento proactivo y minimiza el tiempo de inactividad, ayudarán en la selección de materiales semiconductores o la selección óptima de componentes (por ejemplo, elegir el mejor amplificador óptico para parámetros específicos), y mucho más.

  • Dados los recursos del servidor y el tiempo, los propios avisos están reservados sólo a los miembros registrados, y no son visibles a continuación si no se ha iniciado sesión. Puede registrarse, 100% gratis: 

Membresía requerida

Debes ser miembro para acceder a este contenido.

Ver niveles de membresía

¿Ya eres miembro? Accede aquí

AI Prompt to Causas fundamentales del ruido del amplificador

Propone posibles causas de ruido inesperado en un circuito amplificador basándose en su diseño y sus características de ruido. Esto ayuda a solucionar y diagnosticar problemas en circuitos electrónicos.

Salida: 

				
					You are an AI assistant with expertise in analog electronics and circuit troubleshooting for Electrical Engineers.
**Objective:** Propose a categorized list of potential root causes for unexpected noise observed in an amplifier circuit.

**Circuit and Noise Information:**
- Amplifier Schematic Key Components and Topology: `{amplifier_schematic_key_components_and_topology}` (e.g. 'Op-amp based non-inverting amplifier using OPA227 gain of 20dB with RC feedback network. Input stage JFET. Powered by dual linear regulated supply +/-15V. Shielded enclosure mentioned but effectiveness unknown.').
- Noise Characteristics Description: `{noise_characteristics_description}` (e.g. 'Low-frequency hum (50/60Hz or 100/120Hz)' 'White noise constant across frequencies' 'Intermittent crackling or popping sounds' 'High-frequency oscillation').
- Recent Changes to Circuit or Environment: `{recent_changes_to_circuit_or_environment}` (e.g. 'New SMPS power supply installed nearby' 'Input cables replaced' 'Ambient temperature increased').

**Task:**
Generate a textual list of potential root causes for the described noise. Categorize these causes as follows:
1.  **Intrinsic Noise Sources (Component Level):**
    *   (e.g. Thermal noise in resistors shot noise in semiconductor junctions flicker noise 1/f noise). Relate to components mentioned in `{amplifier_schematic_key_components_and_topology}`.
2.  **Extrinsic Noise Sources (Interference & Coupling):**
    *   (e.g. Electromagnetic Interference EMI from external sources power supply noise grounding issues crosstalk capacitive/inductive coupling). Consider `{recent_changes_to_circuit_or_environment}`.
3.  **Circuit Design & Layout Issues:**
    *   (e.g. Improper grounding/shielding PCB layout problems component placement feedback loop instability impedance mismatching).
4.  **Component Failure or Degradation:**
    *   (e.g. Failing capacitor noisy resistor aging semiconductor).

For each potential cause listed briefly explain its mechanism if relevant to the `{noise_characteristics_description}`.

**IMPORTANT:**
- Tailor the potential causes to the specific type of amplifier and noise described.
- Provide actionable insights that can guide an engineer in their troubleshooting process.
- The output should be a clearly categorized textual list.
							

AI Prompt to Análisis de los 5 porqués del fallo de SCADA

Formula un análisis de "5 porqués" para llegar a la causa raíz de un fallo de comunicación en un sistema SCADA. Este cuestionario estructurado ayuda a descubrir problemas sistémicos más profundos que los síntomas iniciales.

Salida: 

				
					You are an AI assistant specialized in industrial control systems and Root Cause Analysis for Electrical Engineers.
**Objective:** Formulate a structured '5 Whys' analysis to investigate the potential root cause of a communication failure in a SCADA (Supervisory Control and Data Acquisition) system.

**Problem Definition:**
- Problem Statement: `{problem_statement_SCADA_failure}` (A concise statement of the overall problem e.g. 'Loss of data from Remote Terminal Unit RTU-105 to SCADA master station').
- Initial Symptom Observed: `{initial_symptom_observed}` (The first thing noticed e.g. 'RTU-105 status showing as 'offline' on HMI screen').

**Task:**
Generate a '5 Whys' analysis in MARKDOWN format. Start with the `{initial_symptom_observed}` as the first 'Why?'
Follow this structure:
**Problem:** {problem_statement_SCADA_failure}

1.  **Why did `{initial_symptom_observed}` occur?**
    *   *Plausible Answer 1:* (Suggest a technically plausible reason based on common SCADA issues e.g. 'The communication link between RTU-105 and the master station failed.')
2.  **Why did *Plausible Answer 1* occur?**
    *   *Plausible Answer 2:* (Suggest a reason for Plausible Answer 1 e.g. 'The radio transmitter at RTU-105 is not sending a signal.')
3.  **Why did *Plausible Answer 2* occur?**
    *   *Plausible Answer 3:* (Suggest a reason for Plausible Answer 2 e.g. 'There is no power to the radio transmitter at RTU-105.')
4.  **Why did *Plausible Answer 3* occur?**
    *   *Plausible Answer 4:* (Suggest a reason for Plausible Answer 3 e.g. 'The local power supply unit for RTU-105 has failed.')
5.  **Why did *Plausible Answer 4* occur?**
    *   *Potential Root Cause (Plausible Answer 5):* (Suggest a more fundamental reason for Plausible Answer 4 e.g. 'The power supply unit was beyond its rated lifespan and not replaced during scheduled maintenance due to an oversight in the maintenance plan.')

**IMPORTANT:**
- The answers at each 'Why?' stage should be plausible technical reasons relevant to SCADA systems in an Electrical Engineering context.
- The sequence should logically drill down from symptom to a potential systemic root cause.
- You are to generate ONE complete 5-Why chain with plausible answers. The answers are illustrative examples of what an engineer might find.
- The output MUST be in the specified MARKDOWN format.
							

AI Prompt to Factores que contribuyen al fallo del IGBT

Identifica los posibles factores que contribuyen al fallo de un módulo de transistor bipolar de puerta aislada (IGBT) en una unidad de frecuencia variable (VFD) basándose en los datos operativos y el modo de fallo. Esto ayuda a prevenir futuros fallos.

Salida: 

				
					You are an AI assistant with expertise in Power Electronics component failure analysis and Variable Frequency Drives (VFDs) for Electrical Engineers.
**Objective:** Identify and list potential contributing factors to an Insulated Gate Bipolar Transistor (IGBT) module failure within a Variable Frequency Drive (VFD).

**Contextual Information:**
- VFD Model and Application: `{vfd_model_and_application}` (e.g. 'Siemens SINAMICS G120 55kW driving a centrifugal pump in a water treatment plant').
- IGBT Failure Mode Description: `{igbt_failure_mode_description}` (e.g. 'Collector-emitter short circuit' 'Gate oxide breakdown' 'Bond wire lift-off' 'Thermal runaway evidence').
- Operational Data at/before Failure (CSV structure description): `{operational_data_at_failure_csv_description}` (Describe available data columns e.g. 'Timestamp DC_Bus_Voltage Output_Current Heatsink_Temperature Motor_Load_Percent Fault_Codes').

**Task:**
Generate a textual report listing potential contributing factors to the IGBT failure. Categorize these factors and relate them to the provided information. Consider these categories:
1.  **Electrical Stress Factors:**
    *   Overvoltage (transients DC bus overvoltage). How could data in `{operational_data_at_failure_csv_description}` indicate this?
    *   Overcurrent (short circuits sustained overload). How could data in `{operational_data_at_failure_csv_description}` indicate this?
    *   ESD or gate overstress.
2.  **Thermal Stress Factors:**
    *   Excessive junction temperature (inadequate cooling high ambient temperature). How could data in `{operational_data_at_failure_csv_description}` (e.g. heatsink temp) suggest this?
    *   Thermal cycling fatigue (relevant to `{igbt_failure_mode_description}` like bond wire lift-off).
3.  **Mechanical/Environmental Factors:**
    *   Vibration shock corrosion humidity.
4.  **Drive Control & Application Issues:**
    *   Incorrect VFD parameters (e.g. switching frequency acceleration/deceleration rates).
    *   Application mismatch (e.g. VFD undersized for the `{vfd_model_and_application}`).
    *   Harmonics or poor input power quality.
5.  **Component Aging/Wear-out:**
    *   End-of-life for the IGBT module.

For each potential factor briefly explain its relevance to the `{igbt_failure_mode_description}` and how the available `{operational_data_at_failure_csv_description}` might support or refute it.

**IMPORTANT:**
- Your analysis should be grounded in power electronics principles and typical failure mechanisms of IGBTs.
- The goal is to provide a comprehensive list to guide an engineer's investigation not to definitively diagnose the cause.
- The output should be a structured textual report.
							

AI Prompt to Sugerir controles de paneles solares

Sugiere grupos de control adecuados para un experimento sobre la fiabilidad de los nuevos materiales para paneles solares expuestos a condiciones de ensayo específicas. Esto ayuda a garantizar que los efectos observados son atribuibles a los nuevos materiales y no a otros factores.

Salida: 

				
					You are an AI assistant specializing in materials science and experimental design for Electrical Engineering applications particularly photovoltaics.
**Objective:** Suggest appropriate control groups for an experiment designed to test the reliability of new solar panel materials.

**Experimental Context:**
- New Solar Panel Material Description: `{new_material_description}` (e.g. perovskite-based encapsulant novel backsheet material with specific composition).
- Test Conditions Description: `{test_conditions_description}` (e.g. UV exposure intensity temperature cycling humidity levels duration of tests).
- List of Primary Failure Modes Hypothesized: `{primary_failure_modes_hypothesized_list}` (e.g. delamination yellowing cracking power degradation rate).

**Task:**
Provide a textual list of recommended control groups. For EACH control group you suggest:
1.  **Clearly describe the control group** (e.g. 'Standard silicon PV cells with conventional EVA encapsulant and PVF backsheet').
2.  **Explain the RATIONALE** for including this specific control group. How does it help isolate the effect of the `{new_material_description}` or account for confounding variables related to the `{test_conditions_description}`?
3.  Mention which of the `{primary_failure_modes_hypothesized_list}` this control group would be particularly relevant for comparing against.

**Considerations for suggesting control groups:**
-   Industry-standard materials currently used for the same application.
-   Samples identical to the experimental group but NOT subjected to specific stress factors within the `{test_conditions_description}` (if applicable e.g. 'dark controls').
-   Samples using a known 'inferior' or 'superior' material to benchmark performance.

**IMPORTANT:**
- The suggested controls MUST be relevant to solar panel reliability testing.
- The rationale should be scientifically sound and directly related to improving the validity of the experiment's conclusions.
							

AI Prompt to Optimizar la supervisión de la calidad de la energía

Propone una estrategia optimizada de recogida de datos para la supervisión de la calidad de la energía en una planta industrial, teniendo en cuenta su sistema eléctrico y sus cargas críticas. Esto ayuda a identificar y diagnosticar eficazmente los problemas de calidad eléctrica.

Salida: 

				
					You are an AI assistant with expertise in Power Systems and Power Quality analysis for Electrical Engineers.
**Objective:** Propose an optimized data collection strategy for power quality (PQ) monitoring in a specific industrial plant.

**Plant Information:**
- Plant Electrical System Summary: `{plant_electrical_system_summary}` (e.g. main incomer voltage levels key distribution points presence of large non-linear loads like VFDs arc furnaces).
- List of Critical Loads and Sensitivity: `{list_of_critical_loads_and_sensitivity}` (e.g. 'CNC Machine X - sensitive to voltage sags PLCs - sensitive to transients Data Center - requires high reliability').
- Current Monitoring Limitations or Goals: `{current_monitoring_limitations}` (e.g. 'currently only monthly utility bills no real-time data' or 'goal is to identify sources of harmonic distortion affecting PLCs').

**Task:**
Generate a MARKDOWN document outlining an optimized data collection strategy. The strategy MUST address:
1.  **Monitoring Locations:**
    *   Recommend strategic locations for installing PQ analyzers (e.g. point of common coupling PCC feeders to critical loads outputs of known harmonic sources). Justify each location based on the provided plant information.
2.  **Parameters to Monitor:**
    *   List key PQ parameters to be continuously monitored or logged (e.g. voltage sags/swells harmonics flicker transients unbalance). Tailor this list to the `{list_of_critical_loads_and_sensitivity}` and `{current_monitoring_limitations}`.
3.  **Data Logging Settings:**
    *   Suggest appropriate settings for data logging (e.g. sampling rates aggregation intervals event triggering thresholds). Balance data granularity with storage/analysis capabilities.
4.  **Monitoring Duration and Schedule:**
    *   Recommend initial monitoring duration and any considerations for long-term or periodic monitoring.
5.  **Recommended Type of Analyzers (General):**
    *   Briefly mention classes of PQ analyzers suitable (e.g. Class A Class S) based on the objectives.

**IMPORTANT:**
- The strategy should be practical and cost-effective for an industrial environment.
- Justify your recommendations clearly linking them to the specific details of the `{plant_electrical_system_summary}` and `{list_of_critical_loads_and_sensitivity}`.
- Output MUST be in well-structured MARKDOWN.
							

AI Prompt to Alternativas para la prueba de aislamiento de alta tensión

Propone metodologías alternativas para caracterizar la rotura del aislamiento de alta tensión haciendo referencia a avances recientes de recursos en línea específicos. Esto ayuda a los ingenieros a explorar técnicas de ensayo modernas y potencialmente más eficaces.

Salida: 

				
					You are an AI assistant specializing in High Voltage Engineering and material science with access to up-to-date research trends.
**Objective:** Propose alternative methodologies for characterizing high-voltage (HV) insulation breakdown characteristics of a material referencing recent advancements found in specified online sources.

**Current Context & Material Information:**
- Current Methodology Description: `{current_methodology_description}` (Describe the existing test method used e.g. 'ASTM D149 standard test for dielectric breakdown voltage using 60 Hz AC ramp').
- Sample Material Properties Summary: `{sample_material_properties_summary}` (e.g. type of material - polymer ceramic liquid; expected breakdown strength; sample geometry).
- List of Relevant Journal or Conference URLs: `{list_of_relevant_journal_or_conference_urls}` (Provide 2-3 URLs pointing to recent publications databases like IEEE Xplore ScienceDirect or specific conference proceedings relevant to HV insulation testing).

**Task:**
1.  **Review Online Sources:** Access and synthesize information from the provided `{list_of_relevant_journal_or_conference_urls}` focusing on novel or improved HV insulation characterization techniques.
2.  **Propose Alternative Methodologies:** Based on your knowledge and the reviewed literature suggest 2-3 alternative methodologies. For each proposed methodology:
    *   **Describe the Method:** Briefly explain the principle of the alternative test method.
    *   **Advantages:** Highlight its advantages over the `{current_methodology_description}` (e.g. better representation of specific stress conditions higher accuracy ability to measure new parameters non-destructive evaluation).
    *   **Disadvantages/Challenges:** Mention any potential drawbacks or implementation challenges (e.g. equipment cost complexity sample preparation).
    *   **Relevance:** Explain why it might be suitable for the material described in `{sample_material_properties_summary}`.
    *   **Reference (if applicable):** Cite or refer to concepts from the provided URLs if a method is inspired by them.

**Output Format:**
Provide the suggestions as a structured textual list.

**IMPORTANT:**
- Focus on methodologies that offer distinct advantages or insights compared to the current approach.
- Ensure the suggestions are technically sound and relevant to modern HV engineering practices.
- Your suggestions should reflect an understanding of recent advancements gleaned from the provided URLs.
							

AI Prompt to Plan Transformer Modelo RUL

Describe los pasos clave, los requisitos de datos y las consideraciones de modelado para desarrollar un modelo predictivo de la vida útil restante (RUL) de los transformadores. Esto ayuda a estructurar el proceso de desarrollo de dicho sistema.

Salida: 

				
					You are an AI assistant with expertise in predictive maintenance and asset management for Electrical Engineering systems.
**Objective:** Outline the key steps data considerations and modeling approaches for building a Remaining Useful Life (RUL) prediction model for power transformers.

**Available Information:**
- Available Sensor Data Types (CSV format): `{available_sensor_data_types_csv}` (Columns: SensorParameter UnitOfMeasure TypicalSamplingFrequency. Example: 'OilTemperature Celsius Hourly' 'DissolvedGasPPM Daily').
- Historical Failure Data Summary: `{historical_failure_data_summary}` (Describe available data on past failures e.g. 'Dataset of 50 transformer failures with age operational logs and DGA data leading up to failure').
- Key Operational Stressors List: `{key_operational_stressors_list}` (e.g. 'Overloading thermal cycling through-faults poor oil quality').

**Task:**
Generate a MARKDOWN document outlining a comprehensive plan to develop the transformer RUL prediction model. The plan MUST cover:
1.  **Data Preprocessing & Feature Engineering:**
    *   Steps for cleaning handling missing data and synchronizing sensor data from `{available_sensor_data_types_csv}`.
    *   Potential features to engineer from raw data relevant to transformer health and `{key_operational_stressors_list}` (e.g. rate of gas increase loading history thermal stress indicators).
2.  **Health Index (HI) Construction (if applicable):**
    *   Discussion on whether to create a composite Health Index. Methodologies to consider (e.g. weighted scoring PCA based AI-driven HI).
3.  **Modeling Approach Selection:**
    *   Suggest 2-3 suitable machine learning or statistical modeling approaches for RUL prediction (e.g. Survival Analysis LSTMs Gradient Boosting Regression models). Briefly explain why each might be appropriate given the data context.
    *   How to handle right-censored data (transformers that have not yet failed) from `{historical_failure_data_summary}`.
4.  **Model Training & Validation Strategy:**
    *   How to split data for training and testing.
    *   Key performance metrics for RUL models (e.g. RMSE prediction horizon accuracy prognostic horizon).
5.  **Deployment Considerations (Briefly):**
    *   How the model might be integrated into a maintenance workflow.

**IMPORTANT:**
- The plan should be a strategic guide not a detailed coding manual.
- Focus on the logical sequence of steps and critical decision points in model development.
- The output MUST be well-structured MARKDOWN.
							

AI Prompt to Identificar las variables de previsión energética

Identifica variables de entrada clave y sugiere fuentes de datos públicas para un modelo de previsión del consumo de energía en un edificio comercial de una región específica. Aprovecha los recursos en línea para obtener factores externos relevantes.

Salida: 

				
					You are an AI assistant specializing in energy modeling and data analysis for Electrical Engineers.
**Objective:** Identify key input variables and suggest potential public data sources for building a model to forecast energy consumption in a commercial building located in a specific `{region}`.

**Building & Data Context:**
- Building Type and Usage Pattern: `{building_type_and_usage_pattern}` (e.g. 'Office building 9am-6pm weekdays' 'Hospital 24/7 operation' 'Retail mall with variable hours').
- Region: `{region}` (e.g. 'California USA' 'Berlin Germany' 'Singapore').
- Known Internal Data Points (CSV structure description): `{known_internal_data_points_csv_description}` (Describe the columns available in the building's historical energy data e.g. 'Timestamp BuildingID MainMeter_kWh HVAC_kWh Lighting_kWh Occupancy_Count').

**Task:**
Generate a JSON output. The JSON object should contain two main keys: `suggested_input_variables` and `potential_public_data_sources`.
1.  **`suggested_input_variables` (Array of Objects):**
    *   Each object in the array should represent a recommended input variable for the forecasting model.
    *   Each variable object MUST have the following keys:
        *   `variable_name`: (e.g. 'ambient_temperature' 'day_of_week' 'is_holiday' 'building_occupancy_level').
        *   `source_type`: (e.g. 'External/Weather' 'Temporal' 'Internal/BuildingSystem' 'External/Calendar').
        *   `justification`: (Briefly explain why this variable is important for energy forecasting for the given `{building_type_and_usage_pattern}`).
2.  **`potential_public_data_sources` (Array of Objects):**
    *   Each object should describe a type of public data and how to potentially find it for the specified `{region}`.
    *   Each data source object MUST have the following keys:
        *   `data_type`: (e.g. 'Historical Weather Data' 'Public Holiday Calendars' 'Regional Economic Indicators').
        *   `potential_source_examples`: (Suggest types of websites or government agencies for the `{region}` e.g. 'National Weather Service for {region}' 'Official government holiday page for {region}' 'Local statistics office for {region}'). Include a placeholder like 'SEARCH_TERM: historical weather data {region}' if a direct URL is not feasible.
        *   `relevance_to_forecasting`: (How this data can improve the model).

**IMPORTANT:**
- The suggested variables should be relevant for short-term or medium-term energy forecasting.
- The JSON output MUST be well-formed. Use placeholders like `value_placeholder` instead of actual quotation marks for string values within the example structure you describe if needed to avoid CSV conflicts BUT the AI generated JSON itself should be valid.
- The AI should attempt to find genuinely useful public data source *types* or *search strategies* relevant to the `{region}`.
							

AI Prompt to Código Python Eficiencia del motor

Genera un fragmento de código Python utilizando scikit-learn para un modelo de regresión lineal simple para predecir la eficiencia del motor eléctrico basado en características definidas por el usuario. Esto proporciona un inicio rápido para tareas básicas de modelado predictivo.

Salida: 

				
					You are an AI assistant proficient in Python and machine learning for Electrical Engineering applications.
**Objective:** Generate a Python code snippet using the `scikit-learn` library to create a simple linear regression model for predicting electric motor efficiency.

**Model Requirements:**
- Input Features List (as a string): `{input_features_list_str}` (Comma-separated string of feature names e.g. 'voltage current load_torque speed').
- Target Variable Name (as a string): `{target_variable_name_str}` (The name of the column representing motor efficiency e.g. 'motor_efficiency_percentage').
- Sample Data CSV Structure Description: `{sample_data_csv_structure_description_str}` (A brief textual description of how the sample data CSV would look including the names of columns mentioned above e.g. 'CSV file with columns: voltage current load_torque speed motor_efficiency_percentage ... and other data').

**Task:**
Generate a Python code snippet that performs the following steps:
1.  **Imports:** Include necessary imports (`pandas` for data handling `train_test_split` and `LinearRegression` from `scikit-learn` `mean_squared_error` for evaluation).
2.  **Load Data (Placeholder):** Include a placeholder comment indicating where the user should load their data (e.g. `data = pd.read_csv('your_motor_data.csv')`). Explain that the CSV should match the `{sample_data_csv_structure_description_str}`.
3.  **Define Features (X) and Target (y):** Create X using the columns from `{input_features_list_str}` and y using the `{target_variable_name_str}`.
4.  **Split Data:** Split the data into training and testing sets.
5.  **Initialize and Train Model:** Initialize `LinearRegression` and fit it to the training data.
6.  **Make Predictions:** Predict on the test set.
7.  **Evaluate Model (Basic):** Calculate and print the Mean Squared Error (MSE).
8.  **Example Prediction (Optional but good):** Show how to predict efficiency for a hypothetical new data point based on the `{input_features_list_str}`.

**Output Format:**
The output MUST be a single block of Python code.

**IMPORTANT:**
- The code should be well-commented explaining each step.
- Assume the user has a CSV file with data structured as described.
- The list of input features should be dynamically used from `{input_features_list_str}`.
							

AI Prompt to Previsión de carga a corto plazo de la microrred

Desarrolla una previsión de carga a corto plazo para una microrred utilizando los datos históricos de carga y meteorológicos proporcionados y generando predicciones en formato CSV. Esto ayuda en la planificación operativa de las microrredes.

Salida: 

				
					You are an AI assistant specialized in time series forecasting for power systems especially microgrids.
**Objective:** Generate a short-term load forecast for a microgrid based on provided historical load data and weather forecast data.

**Input Data (User will provide this data directly in the prompt or as described):**
- Historical Load Data (CSV string): `{historical_load_data_csv}`
  *   **Format:** Two columns: 'Timestamp' (YYYY-MM-DD HH:MM:SS) and 'Load_kW'.
  *   **Content:** Sufficient historical data (e.g. several weeks or months) at hourly or sub-hourly resolution.
- Weather Forecast Data (CSV string): `{weather_forecast_data_csv}`
  *   **Format:** Columns: 'Timestamp' (YYYY-MM-DD HH:MM:SS) 'Temperature_Celsius' 'Humidity_Percent' 'Irradiance_W_m2' (if available/relevant).
  *   **Content:** Weather forecast corresponding to the desired prediction period.
- Prediction Horizon (integer hours): `{prediction_horizon_hours}` (e.g. 24 for next 24 hours 48 for next 48 hours). Max 72 hours.

**Task:**
1.  **Understand Data:** Parse the provided CSV string data for historical load and weather forecasts.
2.  **Preprocessing (Conceptual Steps you should follow):**
    *   Align timestamps of load and weather data.
    *   Create lagged load features (e.g. load from 1 hour ago 24 hours ago).
    *   Create time-based features (e.g. hour of day day of week).
3.  **Model Selection (Choose a simple yet effective model):**
    *   You can use a straightforward time series model like SARIMA or a simple regression model (e.g. Gradient Boosting Regressor Random Forest Regressor) using lagged load weather features and time features. STATE YOUR CHOSEN MODEL in a comment.
4.  **Model Training:** Train your chosen model on the prepared historical data.
5.  **Forecasting:** Generate load forecasts for the duration specified by `{prediction_horizon_hours}` using the `{weather_forecast_data_csv}`.
6.  **Output Format:**
    *   The output MUST be in CSV format.
    *   Columns: 'Timestamp' (YYYY-MM-DD HH:MM:SS) 'Predicted_Load_kW'.
    *   The timestamps should cover the `{prediction_horizon_hours}` from the end of the historical data.

**IMPORTANT:**
- The AI should perform the forecast calculation. This is not about writing code for the user to run but providing the direct CSV forecast output.
- If the provided data is insufficient or in a clearly wrong format respond with an error message detailing the issue.
- For the model keep it relatively simple to ensure reliable execution within typical AI prompt limitations unless you are confident in handling more complex models internally. State the model used in a comment in your thought process or output if possible without breaking CSV rules (e.g. as a preamble before the CSV). For this output just return the CSV as requested.
- Ensure the Timestamp in the output is for the future predicted period.
							
Tabla de contenido
    Agregue un encabezado para comenzar a generar la tabla de contenido

    ¿DISEÑO o RETO DE PROYECTO?
    Ingeniero Mecánico, Gerente de Proyectos o de I+D
    Desarrollo eficaz de productos

    Disponible para un nuevo desafío a corto plazo en Francia y Suiza.
    Contáctame en LinkedIn
    Productos de plástico y metal, Diseño a coste, Ergonomía, Volumen medio a alto, Industrias reguladas, CE y FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 Clase II y III médica

    Estamos buscando un nuevo patrocinador

     

    ¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
    > Envíanos un mensaje <

    Recibe todos los artículos nuevos
    Gratuito, sin spam, correo electrónico no distribuido ni revendido.

    o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

    Temas tratados: preguntas de prueba, validación, introducción de datos por el usuario, recogida de datos, mecanismo de retroalimentación, pruebas interactivas, diseño de encuestas, pruebas de usabilidad, evaluación de software, diseño experimental, evaluación del rendimiento, cuestionario, ISO 9241, ISO 25010, ISO 20282, ISO 13407 e ISO 26362...

    1. Megan Clay

      ¿la eficacia de la IA a la hora de generar indicaciones depende en gran medida de la calidad de los datos de entrada?

    2. Lance

      ¿también proyectos de ingeniería? Discutámoslo también.

      1. Fabrice

        La IA no es una solución mágica.

    Deja un comentario

    Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

    Publicaciones relacionadas

    Scroll al inicio

    También te puede interesar