Heim » Satz des Pythagoras

Satz des Pythagoras

-550
  • Pythagoras of Samos
Rechtwinkliges Dreieck zur Veranschaulichung des Satzes von Pythagoras in der Geometrie.

(generate image for illustration only)

Der Satz des Pythagoras ist eine grundlegende Beziehung in der euklidischen Geometrie zwischen den drei Seiten eines rechtwinkligen Dreiecks. Er besagt, dass die Fläche des Quadrats, dessen Seite die Hypotenuse (die dem rechten Winkel gegenüberliegende Seite) ist, gleich der Summe der Flächen der Quadrate an den beiden anderen Seiten ist. Die Formel wird ausgedrückt als [latex]a^2 + b^2 = c^2[/latex].

While the theorem is named after the Greek mathematician Pythagoras, evidence suggests that the relationship was known to earlier civilizations, including the Babylonians and Egyptians, who used it for practical purposes like surveying and construction. However, the Pythagoreans are credited with the first formal proof of the theorem, elevating it from a practical observation to a mathematical certainty within a deductive system. There are hundreds of known proofs for the theorem, some geometric and some algebraic, demonstrating its deep and multifaceted nature.

The theorem is a special case of the more general law of cosines, [latex]c^2 = a^2 + b^2 – 2ab\cos(\gamma)[/latex], which relates the lengths of the sides of any triangle. When the angle [latex]\gamma[/latex] is a right angle (90 degrees or [latex]\pi/2[/latex] radians), its cosine is 0, and the formula simplifies to the Pythagorean theorem. The theorem also defines the Euclidean distance between two points in a Cartesian coordinate system. If two points have coordinates [latex](x_1, y_1)[/latex] and [latex](x_2, y_2)[/latex], the distance [latex]d[/latex] between them is given by [latex]d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}[/latex], which is a direct application of the theorem.

UNESCO Nomenclature: 1204
- Geometrie

Typ

Abstraktes System

Unterbrechung

Grundlegendes

Verwendung

Weit verbreitete Verwendung

Vorläufersubstanzen

  • Babylonian clay tablets (e.g., Plimpton 322) showing knowledge of Pythagorean triples
  • Egyptian rope-stretching techniques for creating right angles in construction
  • Early Greek geometric concepts of lines, angles, and areas

Anwendungen

  • construction and carpentry (e.g., ensuring square corners)
  • navigation and triangulation for determining location
  • physics calculations involving vectors
  • computer graphics for distance calculations
  • forensic science for crime scene reconstruction

Patente:

NA

Mögliche Innovationsideen

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: Pythagorean theorem, right-angled triangle, hypotenuse, Euclidean distance, geometry, trigonometry, a^2+b^2=c^2, proof.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt-, Verfahrenstechnik- oder F&E-Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, Lean Manufacturing, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historischer Kontext

(wenn das Datum nicht bekannt oder nicht relevant ist, z. B. "Strömungsmechanik", wird eine gerundete Schätzung des bemerkenswerten Erscheinens angegeben)

Verwandte Erfindungen, Innovationen und technische Prinzipien

Nach oben scrollen

Das gefällt dir vielleicht auch