Lambda calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It forms the theoretical basis for functional programming languages like Lisp, Haskell, and F#.
Lambda-Kalkül
- Alonzo Church
Developed by Alonzo Church in the 1930s, lambda calculus provides a minimalist yet powerful Rahmen for defining and applying functions. Its entire syntax consists of just three components: variables (e.g., `x`), abstractions, and applications. An abstraction, or lambda function, is an anonymous function definition, written as [latex]\lambda x.M[/latex], where `x` is the input parameter and `M` is the body of the function. An application, written as `M N`, represents applying function `M` to argument `N`. Computation in lambda calculus proceeds through a process called beta reduction, where an application of a lambda function to an argument is resolved by substituting the argument for the bound variable within the function’s body. For example, applying [latex](\lambda x.x+1)[/latex] to `3` reduces to `3+1`.
Despite its sparse syntax, lambda calculus is Turing complete. It can represent numbers (Church numerals), booleans, data structures, and control flow (like recursion) purely through functions. This demonstrates that the concept of a function is sufficient for universal computation. This contrasts with the Turing machine model, which is based on state and mutation. The Church-Rosser theorem is a key property of lambda calculus, stating that the order in which reductions are applied does not change the final result, a property known as confluence. This makes reasoning about program behavior much simpler than in imperative models where the order of state changes is critical.
Lambda calculus has had a profound influence on Programmiersprache design. It is the direct ancestor of the functional programming paradigm. Concepts that are now common in many languages, such as first-class functions (treating functions as data), higher-order functions (functions that take other functions as arguments), closures (functions that capture their lexical environment), and currying, all have their roots in lambda calculus. Languages like Lisp were among the first to implement these ideas, and modern languages from Haskell to JavaScript and Python have integrated them deeply into their design.
Typ
Unterbrechung
Verwendung
Vorläufersubstanzen
- Gottlob Frege’s work on formal logic and functions in his ‘Begriffsschrift’
- Set theory developed by Georg Cantor
- Work on mathematical logic by Bertrand Russell and Alfred North Whitehead in ‘Principia Mathematica’
- Combinatory logic developed by Moses Schönfinkel and Haskell Curry
Anwendungen
- functional programming languages (lisp, haskell, f#, ocaml)
- type theory research (e.g., calculus of constructions)
- proof assistants (coq, agda, isabelle)
- compiler design for functional languages
- formal Überprüfung Innovación Software and hardware
- the mapreduce programming model
Patente:
Mögliche Innovationsideen
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt-, Verfahrenstechnik- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, Lean Manufacturing, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Verwandte Erfindungen, Innovationen und technische Prinzipien