Electromotive force (EMF) and electric potential difference (voltage) are distinct concepts, though both are measured in volts. EMF is the work per unit charge done by a non-conservative force (e.g., chemical reaction, changing magnetic field) to move charge within a source. Potential difference is the work per unit charge done by the conservative electrostatic field between two points.
EMF vs. Potential Difference
- James Clerk Maxwell
The core difference between EMF and potential difference lies in the nature of the underlying fields. The electrostatic field ([latex]\mathbf{E}_{c}[/latex]), created by static charges, is conservative. This means the work it does on a charge moving around any closed loop is zero: [latex]\oint \mathbf{E}_{c} \cdot d\mathbf{l} = 0[/latex]. The potential difference, or voltage, between two points is the line integral of this conservative field, [latex]V = -\int \mathbf{E}_{c} \cdot d\mathbf{l}[/latex]. In contrast, an EMF source generates a non-conservative field or “impressed field” ([latex]\mathbf{E}_{nc}[/latex]). This field does non-zero work on a charge around a closed loop: [latex]\mathcal{E} = \oint \mathbf{E}_{nc} \cdot d\mathbf{l} \neq 0[/latex].
In a simple DC circuit with a battery, the battery provides the EMF. Inside the battery, the non-conservative chemical forces move positive charges from the negative to the positive terminal, against the opposing conservative electrostatic field. This “uphill” journey is where the EMF does its work. Outside the battery, in the external circuit, the charges move “downhill” from the positive to the negative terminal, driven by the conservative electrostatic field. The potential drop across the external resistor is equal to the EMF minus the potential drop across the battery’s internal resistance. Thus, EMF is the cause of the sustained current, while potential difference is the measure of energy dissipated per unit charge in a part of the circuit.
Typ
Disruption
Verwendung
Precursors
- Alessandro Volta’s work on electric potential
- Georg Ohm’s law relating voltage, current, and resistance
- Gustav Kirchhoff’s circuit laws
- James Clerk Maxwell’s field equations
Anwendungen
- circuit analysis (kirchhoff’s voltage law)
- battery design and characterization
- understanding of generators and motors
- thermoelectric device analysis
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historical Context
EMF vs. Potential Difference
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles