Heim » Buffon’s Needle Problem

Buffon’s Needle Problem

1777
  • Georges-Louis Leclerc, Comte de Buffon
Geometric probability experiment with needle and parallel lines on a wooden floor.

One of the earliest problems in geometric probability, it is considered a precursor to the Monte Carlo method. It involves dropping a needle of length [latex]l[/latex] onto a floor with parallel lines a distance [latex]t[/latex] apart. The probability that the needle will cross a line is [latex]P = \frac{2l}{\pi t}[/latex] (for [latex]l \le t[/latex]). This provides a physical experiment to estimate [latex]\pi[/latex].

In 1733, Georges-Louis Leclerc, Comte de Buffon, posed the question: what is the probability that a needle, when dropped randomly on a ruled surface, will intersect one of the lines? The solution, published in 1777, is a classic result in geometric probability. To solve it, let the needle have length [latex]l[/latex] and the parallel lines be separated by a distance [latex]t \ge l[/latex]. The position of the needle can be described by two variables: the distance [latex]x[/latex] from the center of the needle to the nearest line, and the angle [latex]\theta[/latex] the needle makes with the lines. The variable [latex]x[/latex] is uniformly distributed in [latex][0, t/2][/latex], and [latex]\theta[/latex] is uniformly distributed in [latex][0, \pi/2][/latex].

The needle crosses a line if [latex]x \le \frac{l}{2}\sin\theta[/latex]. The problem is to find the area of this region in the [latex](x, \theta)[/latex] parameter space and divide it by the total area of the parameter space, which is [latex]\frac{t}{2} \times \frac{\pi}{2} = \frac{\pi t}{4}[/latex]. The area of the “favorable” region (where a crossing occurs) is given by the integral [latex]\int_0^{\pi/2} \frac{l}{2}\sin\theta \,d\theta = \frac{l}{2}[-\cos\theta]_0^{\pi/2} = \frac{l}{2}[/latex]. The probability is the ratio of these areas: [latex]P = \frac{l/2}{\pi t/4} = \frac{2l}{\pi t}[/latex]. By performing the experiment many times and observing the frequency of crossings, one can rearrange the formula to estimate [latex]\pi[/latex]: [latex]\pi \approx \frac{2l}{tP}[/latex]. This physical simulation to solve a mathematical problem is a direct intellectual ancestor of modern Monte Carlo methods.

UNESCO Nomenclature: 1209
– Statistics

Typ

Abstraktes System

Unterbrechung

Grundlegendes

Verwendung

Weit verbreitete Verwendung

Vorläufersubstanzen

  • development of probability theory (Bernoulli, De Moivre)
  • invention of integral calculus (Newton, Leibniz)
  • early work on geometric figures and their properties (Euclid)

Anwendungen

  • early example of geometric probability
  • pedagogical tool for integral calculus and probability
  • historical foundation for stochastic simulation methods

Patente:

NA

Mögliche Innovationsideen

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: Buffon’s needle, geometric probability, Pi, Monte Carlo, stochastic geometry, integral calculus, simulation, probability theory, needle problem, estimation.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt-, Verfahrenstechnik- oder F&E-Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, Lean Manufacturing, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historischer Kontext

(wenn das Datum nicht bekannt oder nicht relevant ist, z. B. "Strömungsmechanik", wird eine gerundete Schätzung des bemerkenswerten Erscheinens angegeben)

Verwandte Erfindungen, Innovationen und technische Prinzipien

Nach oben scrollen

Das gefällt dir vielleicht auch