» 黎曼几何

黎曼几何

1854
  • Bernhard Riemann
利用古董书桌和羊皮纸研究黎曼几何。

(generate image for illustration only)

黎曼几何是微分几何的一个分支,研究黎曼流形——具有黎曼度量的光滑流形。该度量是切空间上内积的集合,其值随点而平滑变化。它允许定义局部几何概念,例如角度、曲线长度、表面积和体积,从而引出广义的曲率概念。

Riemannian geometry, introduced in Bernhard Riemann’s 1854 lecture “On the Hypotheses which lie at the Bases of Geometry,” generalizes Gauss’s theory of surfaces to any number of dimensions. The key object is a Riemannian manifold, which is a differentiable manifold where each tangent space [latex]T_p M[/latex] at a point [latex]p[/latex] is equipped with an inner product [latex]g_p[/latex], called the Riemannian metric. This metric must vary smoothly as [latex]p[/latex] varies over the manifold.

The metric tensor [latex]g[/latex] allows one to measure the length of tangent vectors and the angle between them. Consequently, one can define the length of a curve by integrating the length of its velocity vector. The shortest path between two points is called a geodesic, which generalizes the concept of a “straight line” to curved spaces. The deviation of geodesics from each other reveals the curvature of the manifold.

The full description of curvature in Riemannian geometry is captured by the Riemann curvature tensor, [latex]R(u, v)w[/latex]. This tensor is a multilinear map that quantifies the extent to which the covariant derivative fails to commute. It contains all the intrinsic geometric information of the manifold and generalizes the single value of Gaussian curvature for surfaces. Contractions of the Riemann tensor yield other important curvature measures like the Ricci tensor and scalar curvature, which are central to Einstein’s theory of general relativity.

UNESCO Nomenclature: 1204
- 几何学

类型

抽象系统

中断

革命

使用方法

广泛使用

前体

  • Gauss’s theory of surfaces (Disquisitiones generales circa superficies curvas)
  • 罗巴切夫斯基和博利亚伊的非欧几里得几何
  • Ricci-Curbastro 和 Levi-Civita 对张量微积分的发展
  • 流形的概念

应用

  • 广义相对论(时空是伪黎曼流形)
  • 数据科学(流形学习技术)
  • 机器人技术(配置空间中的运动规划)
  • geodesy (modeling the earth’s shape)
  • 计算机视觉(形状分析)

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: riemannian manifold, metric tensor, tangent space, curvature, geodesic, general relativity, riemann, inner product.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢