黎曼几何是微分几何的一个分支,研究黎曼流形——具有黎曼度量的光滑流形。该度量是切空间上内积的集合,其值随点而平滑变化。它允许定义局部几何概念,例如角度、曲线长度、表面积和体积,从而引出广义的曲率概念。

(generate image for illustration only)
黎曼几何是微分几何的一个分支,研究黎曼流形——具有黎曼度量的光滑流形。该度量是切空间上内积的集合,其值随点而平滑变化。它允许定义局部几何概念,例如角度、曲线长度、表面积和体积,从而引出广义的曲率概念。
Riemannian geometry, introduced in Bernhard Riemann’s 1854 lecture “On the Hypotheses which lie at the Bases of Geometry,” generalizes Gauss’s theory of surfaces to any number of dimensions. The key object is a Riemannian manifold, which is a differentiable manifold where each tangent space [latex]T_p M[/latex] at a point [latex]p[/latex] is equipped with an inner product [latex]g_p[/latex], called the Riemannian metric. This metric must vary smoothly as [latex]p[/latex] varies over the manifold.
The metric tensor [latex]g[/latex] allows one to measure the length of tangent vectors and the angle between them. Consequently, one can define the length of a curve by integrating the length of its velocity vector. The shortest path between two points is called a geodesic, which generalizes the concept of a “straight line” to curved spaces. The deviation of geodesics from each other reveals the curvature of the manifold.
The full description of curvature in Riemannian geometry is captured by the Riemann curvature tensor, [latex]R(u, v)w[/latex]. This tensor is a multilinear map that quantifies the extent to which the covariant derivative fails to commute. It contains all the intrinsic geometric information of the manifold and generalizes the single value of Gaussian curvature for surfaces. Contractions of the Riemann tensor yield other important curvature measures like the Ricci tensor and scalar curvature, which are central to Einstein’s theory of general relativity.
迎接新挑战
机械工程师、项目、工艺工程师或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
黎曼几何
(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。
相关发明、创新和技术原理
{{标题}}
{%,如果摘录 %}{{ 摘录 | truncatewords:55 }}
{% endif %}