» Redox in Cellular Respiration

Redox in Cellular Respiration

1940

Cellular respiration is a series of redox reactions where organic molecules, like glucose, are oxidized to release energy. Glucose ([latex]C_6H_{12}O_6[/latex]) is oxidized to [latex]CO_2[/latex], while oxygen ([latex]O_2[/latex]) is reduced to water ([latex]H_2O[/latex]). This process transfers electrons through an electron transport chain, creating a proton gradient that drives the synthesis of ATP, the cell’s primary energy currency.

Cellular respiration is a controlled, multi-step oxidation of glucose. Unlike direct combustion, which releases energy explosively as heat, the cell breaks down glucose gradually through glycolysis, the Krebs cycle (citric acid cycle), and oxidative phosphorylation. In this cascade, electrons are stripped from glucose and its intermediates and transferred to electron carriers like [latex]NAD^+[/latex] and [latex]FAD[/latex], reducing them to [latex]NADH[/latex] and [latex]FADH_2[/latex].

These reduced coenzymes then donate their high-energy electrons to the electron transport chain (ETC), a series of protein complexes in the inner mitochondrial membrane. As electrons are passed down the chain, they move to successively lower energy levels. The final electron acceptor is molecular oxygen, which is highly electronegative and is reduced to form water. The energy released during this electron transfer is used to protons ([latex]H^+[/latex]) from the mitochondrial matrix into the intermembrane space, establishing an electrochemical gradient. This proton-motive force is a form of stored energy. The flow of protons back into the matrix through an enzyme called ATP synthase powers the synthesis of large amounts of ATP from ADP and inorganic phosphate, a process called chemiosmosis.

UNESCO Nomenclature: 2406
– Biochemistry

类型

Chemical Process

Disruption

Foundational

使用方法

Widespread Use

Precursors

  • discovery of enzymes
  • antoine lavoisier’s work showing respiration is a form of slow combustion
  • elucidation of the structure of glucose
  • discovery of atp and its role in energy transfer

应用

  • understanding metabolic diseases
  • development of drugs targeting metabolic pathways (e.g., metformin)
  • exercise physiology
  • food science and preservation
  • biotechnology (e.g., microbial fuel cells)

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: cellular respiration, metabolism, ATP, electron transport chain, krebs cycle, glycolysis, oxidative phosphorylation, mitochondria

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢