» Kelvin (Thomson) Relations

Kelvin (Thomson) Relations

1854
  • William Thomson (Lord Kelvin)
Thermodynamic laboratory with Peltier and Seebeck apparatus illustrating Kelvin relations.

The Kelvin relations are two equations that thermodynamically link the three thermoelectric coefficients: the first relation connects the Peltier coefficient ([latex]\Pi[/latex]) to the Seebeck coefficient ([latex]S[/latex]) via absolute temperature ([latex]T[/latex]): [latex]Pi = S \cdot T[/latex]. The second relates the Thomson coefficient ([latex]\mathcal{K}[/latex]) to the temperature derivative of the Seebeck coefficient: [latex]\mathcal{K} = T \frac{dS}{dT}[/latex].

The Kelvin relations are a cornerstone of thermoelectric theory, demonstrating that the Seebeck, Peltier, and Thomson effects are not independent phenomena but are deeply interconnected aspects of the same underlying transport process. Lord Kelvin derived these relationships by applying the laws of thermodynamics to a thermoelectric circuit, treating it as a reversible heat engine. His derivation, while insightful, predated the more rigorous 框架 of irreversible thermodynamics.

Later, Lars Onsager’s work on reciprocal relations for irreversible processes provided a more general and solid foundation for the Kelvin relations. The Onsager reciprocal relations, based on the principle of microscopic reversibility, confirm Kelvin’s results. The relations are immensely practical. For instance, it is often easier to measure the Seebeck coefficient (S) and its temperature dependence than it is to directly measure the Peltier ([latex]Pi[/latex]) or Thomson ([latex]mathcal{K}[/latex]) coefficients. Using the Kelvin relations, one can calculate [latex]Pi[/latex] and [latex]mathcal{K}[/latex] from measurements of S, which is critical for characterizing new materials and designing efficient devices.

UNESCO Nomenclature: 2203
- 热力学

类型

抽象系统

中断

基础

使用方法

广泛使用

前体

  • Sadi Carnot’s theory of heat engines
  • Rudolf Clausius’s formulation of the second law of thermodynamics
  • the individual discoveries of the Seebeck and Peltier effects
  • the development of differential calculus for describing physical processes

应用

  • provides a self-consistent theoretical framework for thermoelectricity
  • allows for the experimental determination of one coefficient by measuring another
  • essential for the accurate modeling and simulation of thermoelectric devices
  • validates the application of reversible thermodynamics to thermoelectric processes

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: Kelvin relations, Thomson relations, Onsager reciprocal relations, thermodynamics, Seebeck coefficient, Peltier coefficient, Thomson coefficient, irreversible thermodynamics, transport phenomena, solid-state physics.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢