» 故障模式和影响分析(FMEA)

故障模式和影响分析(FMEA)

1949

FMEA is a systematic, bottom-up, inductive method for identifying potential failure modes in a system, product, or process. For each failure mode, it assesses the potential effects or consequences, their severity, likelihood of occurrence, and the ability to detect them. The goal is to prioritize and mitigate high-risk failure modes before they occur.

FMEA is one of the first structured reliability analysis techniques. It involves a cross-functional team brainstorming all conceivable ways a component or process step could fail (the failure modes). For each mode, the team identifies the potential effects on the system, the customer, or the environment. Three factors are then typically rated on a scale (e.g., 1 to 10): Severity (S) of the effect, Occurrence (O) likelihood of the cause, and Detection (D) probability of finding the failure before it reaches the customer.

These three scores are multiplied to calculate a Risk Priority Number (RPN), where [latex]RPN = S \times O \times D[/latex]. A high RPN indicates a high-risk failure mode that requires immediate attention. The team then develops and implements corrective actions to reduce the RPN, typically by improving the design to lower the Occurrence or by adding controls to improve Detection.

A key variant is the Failure Mode, Effects, and Criticality Analysis (FMECA), which extends FMEA by including a quantitative criticality analysis based on the probability of the failure mode and the severity of its consequences. FMEA is a living document, continuously updated as designs change, new data becomes available, or processes are improved.

UNESCO Nomenclature: 3307
– Industrial design and technology

类型

Abstract System

Disruption

Revolutionary

使用方法

Widespread Use

Precursors

  • u.s. military’s need for improved reliability of munitions in the 1940s
  • early quality control techniques from Shewhart and Deming
  • brainstorming techniques
  • root cause analysis methods

应用

  • automotive industry for design and manufacturing process improvement (sae j1739)
  • aerospace design to prevent catastrophic failures
  • 医疗器械 development to ensure patient safety
  • food industry to identify and control potential hazards (haccp)

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: fmea, fmeca, failure mode, risk priority number, rpn, bottom-up analysis, quality control, process improvement

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢