» Conservation of Mass

Conservation of Mass

1757

In continuum mechanics, the principle of mass conservation states that the mass of a closed system must remain constant over time. For a fluid, this is expressed by the continuity equation. In its Eulerian differential form, it is written as [latex]\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0[/latex], where [latex]\rho[/latex] is the density and [latex]\mathbf{u}[/latex] is the velocity field.

The conservation of mass is a fundamental principle in physics, and its mathematical formulation within continuum 机械 is known as the continuity equation. This equation provides a precise statement about how the density of a material changes in space and time. The equation [latex]\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0[/latex] applies at every point within the continuum. The term [latex]\frac{\partial \rho}{\partial t}[/latex] represents the rate of change of density at a fixed point (the local or unsteady term), while the term [latex]\nabla \cdot (\rho \mathbf{u})[/latex] is the divergence of the mass flux ([latex]\rho \mathbf{u}[/latex]), representing the net rate of mass flowing out of an infinitesimal volume around that point.

The equation essentially states that if the density at a point is increasing, it must be because more mass is flowing into the infinitesimal volume than is flowing out, and vice versa. For a special case known as an incompressible flow, the density [latex]\rho[/latex] of a fluid parcel is assumed to be constant as it moves. In this case, the continuity equation simplifies significantly to [latex]\nabla \cdot \mathbf{u} = 0[/latex]. This simplified form is widely used in modeling liquids like water and in low-speed aerodynamics. The continuity equation is one of the core governing equations, alongside the conservation of momentum and energy, used in virtually all analyses in fluid dynamics and solid mechanics.

UNESCO Nomenclature: 2209
– Fluid dynamics

类型

Physical Law

Disruption

Foundational

使用方法

Widespread Use

Precursors

  • The philosophical principle of conservation of matter
  • Development of vector calculus and the divergence theorem
  • Leonhard Euler’s formulation of fluid motion equations
  • Daniel Bernoulli’s work on fluid dynamics

应用

  • design of pipelines and HVAC systems to ensure proper flow rates
  • aerospace engineering for calculating air density changes around aircraft
  • hydrology for modeling river flow and groundwater movement
  • meteorology for forecasting weather patterns based on air mass movement

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: continuity equation, conservation of mass, fluid dynamics, density, velocity field, incompressible flow, divergence, mass flux

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢