Casa » Quantization of Energy

Quantization of Energy

1900-12-14
  • Max Planck

Energy is not continuous but comes in discrete packets called quanta. The energy [latex]E[/latex] of a single quantum of electromagnetic radiation (a photon) is directly proportional to its frequency [latex]\nu[/latex]. This relationship is defined by the Planck-Einstein relation, [latex]E = h\nu[/latex], where [latex]h[/latex] is the Planck constant. This concept fundamentally challenged classical physics.

The concept of quantization originated from Max Planck’s work on black-body radiation. Classical physics, specifically the Rayleigh-Jeans law, failed to accurately predict the spectral distribution of thermal radiation emitted by a black body, leading to the ‘ultraviolet catastrophe’. To resolve this, Planck postulated in 1900 that the energy of the oscillators in the walls of the black body could only take on discrete values, proportional to an integer multiple of a fundamental unit of energy, [latex]h\nu[/latex]. This meant energy was emitted and absorbed in discrete packets, or ‘quanta’.

This was a radical departure from the classical view where energy was considered a continuous quantity. Albert Einstein later extended this idea in 1905 to explain the photoelectric effect, proposing that light itself is composed of these discrete energy packets, which were later named photons. The energy of a photon is given by [latex]E = h\nu[/latex], where [latex]h \approx 6.626 \times 10^{-34} \text{ J} \cdot \text{s}[/latex]. This relation connects the particle-like property of light (energy packets) with its wave-like property (frequency), laying the groundwork for wave-particle duality. The quantization of energy is not limited to light; it is a fundamental principle of quantum meccanica, applying to the energy levels of electrons in atoms, vibrational modes of molecules, and other quantum systems.

UNESCO Nomenclature: 2210
– Quantum Physics

Tipo

Abstract System

Disruption

Revolutionary

Utilizzo

Widespread Use

Precursors

  • Kirchhoff’s law of thermal radiation (1859)
  • Stefan-Boltzmann law (1879)
  • Wien’s displacement law (1893)
  • Rayleigh-Jeans law (c. 1900)
  • Studies on black-body radiation

Applicazioni

  • lasers
  • photoelectric effect explanation
  • guidato lighting
  • quantum computing
  • atomic clocks

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: quantization, Planck’s constant, black-body radiation, photon, energy levels, quantum, frequency, Max Planck

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti