The Navier–Stokes equations are a set of non-linear differenziale parziale equations describing the motion of viscous fluid substances. They are a statement of Newton’s second law, balancing momentum changes with pressione gradients, viscous forces, and external forces. For an incompressible fluid, the equation is [latex]\rho (\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{f}[/latex].
Equazioni di Navier-Stokes
- Claude-Louis Navier
- George Gabriel Stokes

The Navier-Stokes equations are the cornerstone of modern fluid dynamics. The terms in the equation represent the fundamental physical principles governing fluid motion. The left side, [latex]\rho (\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v})[/latex], represents the inertial forces per unit volume, broken down into the unsteady acceleration (change in velocity over time) and the convective acceleration (change in velocity due to the fluid moving to a new location). The right side details the forces acting on the fluid. The term [latex]-\nabla p[/latex] is the pressure gradient, which drives flow from high-pressure to low-pressure regions. The term [latex]\mu \nabla^2 \mathbf{v}[/latex] represents the viscous forces, which act as an internal friction within the fluid, resisting motion and dissipating energy. Finally, [latex]\mathbf{f}[/latex] accounts for external body forces like gravity.
These equations are notoriously difficult to solve analytically due to their non-linear nature, specifically the convective acceleration term [latex]\mathbf{v} \cdot \nabla \mathbf{v}[/latex]. This non-linearity is the primary cause of turbulence, a complex and chaotic flow regime that remains one of the great unsolved problems in classical physics. In fact, proving the existence and smoothness of solutions to the three-dimensional Navier-Stokes equations is one of the seven Millennium Prize Problems posed by the Clay Mathematics Institute.
For practical applications, engineers and scientists rely on computational fluid dynamics (CFD), where supercomputers are used to find approximate numerical solutions. By discretizing the fluid domain into a fine mesh and solving the equations for each cell, CFD can simulate everything from the airflow over a Formula 1 car to the circulation of the Earth’s oceans, making the Navier-Stokes equations an indispensable tool in modern science and engineering.
Tipo
Interruzione
Utilizzo
Precursori
- isaac newton’s laws of motion
- leonhard euler’s equations for inviscid flow
- augustin-louis cauchy’s momentum equation
- lo sviluppo del calcolo differenziale parziale
Applicazioni
- progettazione di aeromobili e automobili
- previsioni del tempo
- analisi del flusso sanguigno
- progettazione di centrali elettriche
- analisi della dispersione dell'inquinamento
- progettazione di oleodotti
Brevetti:
Potenziali idee innovative
Livelli! Iscrizione richiesta
Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!
DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto, ingegneria di processo o ricerca e sviluppo
Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, produzione snella, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico
Stiamo cercando un nuovo sponsor
La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <
Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta
oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<
Contesto storico
Equazioni di Navier-Stokes
(se la data non è nota o non è rilevante, ad esempio "meccanica dei fluidi", viene fornita una stima approssimativa della sua notevole comparsa)
Principi di invenzione, innovazione e tecnica correlati