Casa » Navier–Stokes Equations

Navier–Stokes Equations

1822
  • Claude-Louis Navier
  • George Gabriel Stokes

The Navier–Stokes equations are a set of non-linear partial differential equations describing the motion of viscous fluid substances. They are a statement of Newton’s second law, balancing momentum changes with pressure gradients, viscous forces, and external forces. For an incompressible fluid, the equation is [latex]\rho (\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{f}[/latex].

The Navier-Stokes equations are the cornerstone of modern fluid dynamics. The terms in the equation represent the fundamental physical principles governing fluid motion. The left side, [latex]\rho (\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v})[/latex], represents the inertial forces per unit volume, broken down into the unsteady acceleration (change in velocity over time) and the convective acceleration (change in velocity due to the fluid moving to a new location). The right side details the forces acting on the fluid. The term [latex]-\nabla p[/latex] is the pressure gradient, which drives flow from high-pressure to low-pressure regions. The term [latex]\mu \nabla^2 \mathbf{v}[/latex] represents the viscous forces, which act as an internal friction within the fluid, resisting motion and dissipating energy. Finally, [latex]\mathbf{f}[/latex] accounts for external body forces like gravity.

These equations are notoriously difficult to solve analytically due to their non-linear nature, specifically the convective acceleration term [latex]\mathbf{v} \cdot \nabla \mathbf{v}[/latex]. This non-linearity is the primary cause of turbulence, a complex and chaotic flow regime that remains one of the great unsolved problems in classical physics. In fact, proving the existence and smoothness of solutions to the three-dimensional Navier-Stokes equations is one of the seven Millennium Prize Problems posed by the Clay Mathematics Institute.

For practical applications, engineers and scientists rely on computational fluid dynamics (CFD), where supercomputers are used to find approximate numerical solutions. By discretizing the fluid domain into a fine mesh and solving the equations for each cell, CFD can simulate everything from the airflow over a Formula 1 car to the circulation of the Earth’s oceans, making the Navier-Stokes equations an indispensable tool in modern science and engineering.

UNESCO Nomenclature: 2210
– Mechanics

Tipo

Abstract System

Disruption

Revolutionary

Utilizzo

Widespread Use

Precursors

  • isaac newton’s laws of motion
  • leonhard euler’s equations for inviscid flow
  • augustin-louis cauchy’s momentum equation
  • the development of partial differential calculus

Applicazioni

  • aircraft and car design
  • weather forecasting
  • blood flow analysis
  • power station design
  • analysis of pollution dispersion
  • design of oil pipelines

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: navier-stokes, CFD, viscous flow, incompressible flow, fluid dynamics, partial differential equation, newton’s second law, turbulence

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti