Casa » L'equazione del calore

L'equazione del calore

1822
  • Jean-Baptiste Joseph Fourier
Spazio di lavoro per l'ingegneria termica con strumenti di progettazione e simulazione dei dissipatori di calore.

A fundamental second-order linear parabolic differenziale parziale equation describing heat distribution or other diffusion processes. Its canonical form is [latex]\frac{partial u}{partial t} = \alpha \nabla^2 u[/latex], where [latex]u(\vec{x},t)[/latex] is temperature, [latex]t[/latex] is time, and [latex]\alpha[/latex] is thermal diffusivity. Solutions model how an initial temperature distribution evolves, smoothing out irregularities over time and approaching a steady state.

The heat equation is the prototypical example of a parabolic PDE. The term [latex]\nabla^2[/latex] is the Laplace operator, which in one spatial dimension [latex]x[/latex] simplifies the equation to [latex]u_t = \alpha u_{xx}[/latex]. The constant [latex]\alpha[/latex] represents the thermal diffusivity of the material, a measure of how quickly heat spreads. A key property of the heat equation is its ‘infinite speed of propagation’; a change in temperature at any point is felt instantaneously, though infinitesimally, everywhere else in the domain. This is a mathematical idealization of the rapid nature of diffusion.

Another defining characteristic is its smoothing effect. Even if the initial temperature distribution [latex]u(\vec{x},0)[/latex] is discontinuous (e.g., a sharp jump in temperature), the solution [latex]u(\vec{x},t)[/latex] for any time [latex]t > 0[/latex] becomes infinitely differentiable (smooth). This reflects the physical reality that sharp temperature gradients cannot be maintained and will immediately begin to even out. The maximum principle for the heat equation states that the maximum value of [latex]u[/latex] must occur either at the initial time or on the boundary of the spatial domain, meaning no new hot spots can spontaneously appear inside the material.

Solutions are often found using the method of separation of variables or by employing Fourier transforms, which were developed by Fourier precisely for this purpose. The fundamental solution, known as the heat kernel, represents the temperature distribution resulting from an initial point source of heat.

UNESCO Nomenclature: 1208
– Mathematical physics

Tipo

Sistema astratto

Interruzione

Fondamento

Utilizzo

Uso diffuso

Precursori

  • newton’s law of cooling
  • lo sviluppo del calcolo
  • concetto di derivate parziali
  • fourier’s work on trigonometric series (fourier series)

Applicazioni

  • ingegneria termica per la progettazione del dissipatore di calore
  • modellazione finanziaria (l'equazione di Black-Scholes è una variante)
  • elaborazione delle immagini per la riduzione del rumore (diffusione Perona-Malik)
  • neuroscienze per la modellazione della propagazione del segnale neuronale
  • ingegneria chimica per la modellazione della diffusione molecolare

Brevetti:

NA

Potenziali idee innovative

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: heat equation, diffusion, parabolic pde, fourier analysis, thermal conductivity, brownian motion, black-scholes, mathematical physics.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto, ingegneria di processo o ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, produzione snella, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Contesto storico

(se la data non è nota o non è rilevante, ad esempio "meccanica dei fluidi", viene fornita una stima approssimativa della sua notevole comparsa)

Principi di invenzione, innovazione e tecnica correlati

Torna in alto

Potrebbe anche piacerti