The Finite Volume Method (FVM) is a dominant numerical technique in CFD for solving partial differential equations. It discretizes the domain into a mesh of control volumes and applies the governing equations in their integral form to each volume. By converting volume integrals to surface integrals using the divergence theorem, it focuses on calculating the flux of conserved properties across cell faces.
Finite Volume Method (FVM)
- Suhas V. Patankar (popularized)
The Finite Volume Method’s strength lies in its approach to discretization, which is particularly well-suited for fluid dynamics problems governed by conservation laws. The process begins by dividing the geometric domain into a set of non-overlapping control volumes, or cells, which collectively form a mesh. The governing partial differential equations are then integrated over each of these control volumes.
A key step is the application of the Gauss-Divergence theorem, which transforms volume integrals of divergence terms into surface integrals of fluxes across the cell boundaries. For a generic conserved scalar [latex]\phi[/latex], the conservation equation in integral form is [latex]\frac{\partial}{\partial t} \int_V \phi dV + \oint_S \mathbf{F} \cdot d\mathbf{S} = \int_V Q dV[/latex], where [latex]\mathbf{F}[/latex] is the flux vector and [latex]Q[/latex] is a source term. The FVM discretizes this exact equation, approximating the surface and volume integrals. The flux across each face is calculated, often using interpolation schemes to find the value of [latex]\phi[/latex] at the cell face from the values stored at the cell centers.
This flux-based approach ensures that the quantity [latex]\phi[/latex] is conserved perfectly at the discrete level, both locally for each cell and globally for the entire domain. This property of exact conservation is a major advantage over methods like the Finite Difference Metodo and makes FVM robust and physically realistic, especially when dealing with shocks or sharp gradients in the flow. It is also flexible in handling unstructured meshes, which are necessary for modeling complex geometries.
Tipo
Disruption
Utilizzo
Precursors
- Integral Calculus and the Gauss-Divergence Theorem
- Finite Difference Method (FDM)
- Concept of Conservation Laws in Physics
- Early work on numerical solutions to PDEs by Courant, Friedrichs, and Lewy
- Development of unstructured meshing techniques
Applicazioni
- aerospace engineering for external aerodynamics
- automotive design for drag reduction and cooling
- hvac system design and analysis
- processo chimico engineering for reactor modeling
- environmental engineering for pollutant dispersal in air and water
- heat transfer analysis in electronics
Brevetti:
Potential Innovations Ideas
Livelli! Iscrizione richiesta
Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!
DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico
Stiamo cercando un nuovo sponsor
La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <
Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta
oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<
Related Invention, Innovation & Technical Principles