Casa » Caratteristica di Eulero

Caratteristica di Eulero

1758
  • Leonhard Euler
Scrivania di un matematico con formula caratteristica di Eulero, penna d'oca, inchiostro e pergamena.

(generate image for illustration only)

The Euler characteristic is a topological invariant, a number that describes a topological space’s structure or shape regardless of how it is bent. For polyhedra, it is defined by the formula [latex]\chi = V – E + F[/latex], where V, E, and F are the number of vertices, edges, and faces, respectively. For a sphere, [latex]\chi = 2[/latex], while for a torus, [latex]\chi = 0[/latex].

Euler’s original formula was stated for convex polyhedra. For any such shape, the sum of vertices minus edges plus faces is always 2. This discovery was one of the first examples of a topological property. The concept was later generalized to any topological space. For a finite CW-complex, the Euler characteristic can be defined as the alternating sum of the number of cells of each dimension: [latex]\chi = k_0 – k_1 + k_2 – \dots[/latex], where [latex]k_n[/latex] is the number of n-dimensional cells. This generalizes the V-E+F formula. A more profound generalization in algebraic topology defines the Euler characteristic in terms of homology groups. Specifically, it is the alternating sum of the Betti numbers [latex]b_n[/latex] (the rank of the n-th homology group): [latex]\chi = \sum_{n=0}^{\infty} (-1)^n b_n[/latex]. This definition makes it clear that the Euler characteristic is a topological invariant, as homology groups are themselves topological invariants. This number provides a powerful, yet simple, tool to distinguish between different topological surfaces. For example, any surface homeomorphic to a sphere will have [latex]\chi=2[/latex], and any surface homeomorphic to a torus will have [latex]\chi=0[/latex].

UNESCO Nomenclature: 1209
- Topologia

Tipo

Sistema astratto

Interruzione

Fondamento

Utilizzo

Uso diffuso

Precursori

  • Ancient Greek geometry on Platonic solids
  • René Descartes’s unpublished work on polyhedra (Descartes’ theorem on total angular defect)
  • Early work in graph theory

Applicazioni

  • computer graphics for mesh simplification
  • graph theory
  • algebraic topology (as the alternating sum of Betti numbers)
  • cartography (map coloring problems)
  • cosmology (studying the shape of the universe)

Brevetti:

NA

Potenziali idee innovative

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: Euler characteristic, topological invariant, polyhedron, vertices, edges, faces, Betti numbers, homology.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto, ingegneria di processo o ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, produzione snella, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Contesto storico

(se la data non è nota o non è rilevante, ad esempio "meccanica dei fluidi", viene fornita una stima approssimativa della sua notevole comparsa)

Principi di invenzione, innovazione e tecnica correlati

Torna in alto

Potrebbe anche piacerti