Home » Quantum Tunneling

Quantum Tunneling

1927
  • Friedrich Hund

A quantum mechanical phenomenon where a wavefunction can propagate through a potential energy barrier. Classically, a particle lacking sufficient energy to surmount a barrier would be reflected. However, due to the wave-like nature of particles, there is a non-zero probability that the particle can appear on the other side of the barrier, effectively ‘tunneling’ through it.

Quantum tunneling is a direct consequence of the Heisenberg uncertainty principle and the probabilistic nature of a particle’s location described by its wavefunction. When a particle’s wavefunction encounters a potential barrier, it does not abruptly drop to zero. Instead, it decays exponentially inside the barrier. If the barrier is thin enough, the wavefunction can have a small but non-zero amplitude on the other side. Since the probability of finding the particle is related to the square of the wavefunction’s amplitude, there is a finite probability of the particle being detected on the far side of the barrier.

The probability of tunneling decreases exponentially with the thickness of the barrier and the square root of the barrier’s height and the particle’s mass. This is why tunneling is significant for microscopic particles like electrons but negligible for macroscopic objects. For example, in nuclear fusion within the Sun, protons do not have enough thermal energy to overcome their mutual electrostatic repulsion (the Coulomb barrier). Fusion is only possible because the protons can tunnel through this barrier, allowing the strong nuclear force to bind them together. Similarly, the scanning tunneling microscope (STM) works by measuring the tunneling current of electrons between a sharp metallic tip and a sample surface, allowing for imaging with atomic resolution.

UNESCO Nomenclature: 2210
– Quantum Physics

Type

Abstract System

Disruption

Substantial

Usage

Widespread Use

Precursors

  • Schrödinger equation (1926)
  • Wave-particle duality
  • Studies of radioactivity (alpha decay)
  • Heisenberg uncertainty principle (1927)

Applications

  • scanning tunneling microscope (STM)
  • tunnel diodes in electronics
  • flash memory (floating-gate transistors)
  • nuclear fusion in stars
  • alpha decay of atomic nuclei

Patents:

NA

Potential Innovations Ideas

Professionals (100% free) Membership Required

You must be a Professionals (100% free) member to access this content.

Join Now

Already a member? Log in here
Related to: quantum tunneling, wavefunction, potential barrier, scanning tunneling microscope, nuclear fusion, alpha decay, quantum mechanics, probability

Leave a Reply

Your email address will not be published. Required fields are marked *

AVAILABLE FOR NEW CHALLENGES
Mechanical Engineer, Project or R&D Manager
Effective product development

Available for a new challenge on short notice.
Contact me on LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

We are looking for a new sponsor

 

Your company or institution is into technique, science or research ?
> send us a message <

Receive all new articles
Free, no spam, email not distributed nor resold

or you can get your full membership -for free- to access all restricted content >here<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll to Top

You May Also Like